gtsocial-umbx

Unnamed repository; edit this file 'description' to name the repository.
Log | Files | Refs | README | LICENSE

primes.go (6763B)


      1 // Copyright (c) 2014 The mathutil Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package mathutil // import "modernc.org/mathutil"
      6 
      7 import (
      8 	"math"
      9 )
     10 
     11 // IsPrimeUint16 returns true if n is prime. Typical run time is few ns.
     12 func IsPrimeUint16(n uint16) bool {
     13 	return n > 0 && primes16[n-1] == 1
     14 }
     15 
     16 // NextPrimeUint16 returns first prime > n and true if successful or an
     17 // undefined value and false if there is no next prime in the uint16 limits.
     18 // Typical run time is few ns.
     19 func NextPrimeUint16(n uint16) (p uint16, ok bool) {
     20 	return n + uint16(primes16[n]), n < 65521
     21 }
     22 
     23 // IsPrime returns true if n is prime. Typical run time is about 100 ns.
     24 func IsPrime(n uint32) bool {
     25 	switch {
     26 	case n&1 == 0:
     27 		return n == 2
     28 	case n%3 == 0:
     29 		return n == 3
     30 	case n%5 == 0:
     31 		return n == 5
     32 	case n%7 == 0:
     33 		return n == 7
     34 	case n%11 == 0:
     35 		return n == 11
     36 	case n%13 == 0:
     37 		return n == 13
     38 	case n%17 == 0:
     39 		return n == 17
     40 	case n%19 == 0:
     41 		return n == 19
     42 	case n%23 == 0:
     43 		return n == 23
     44 	case n%29 == 0:
     45 		return n == 29
     46 	case n%31 == 0:
     47 		return n == 31
     48 	case n%37 == 0:
     49 		return n == 37
     50 	case n%41 == 0:
     51 		return n == 41
     52 	case n%43 == 0:
     53 		return n == 43
     54 	case n%47 == 0:
     55 		return n == 47
     56 	case n%53 == 0:
     57 		return n == 53 // Benchmarked optimum
     58 	case n < 65536:
     59 		// use table data
     60 		return IsPrimeUint16(uint16(n))
     61 	default:
     62 		mod := ModPowUint32(2, (n+1)/2, n)
     63 		if mod != 2 && mod != n-2 {
     64 			return false
     65 		}
     66 		blk := &lohi[n>>24]
     67 		lo, hi := blk.lo, blk.hi
     68 		for lo <= hi {
     69 			index := (lo + hi) >> 1
     70 			liar := liars[index]
     71 			switch {
     72 			case n > liar:
     73 				lo = index + 1
     74 			case n < liar:
     75 				hi = index - 1
     76 			default:
     77 				return false
     78 			}
     79 		}
     80 		return true
     81 	}
     82 }
     83 
     84 // IsPrimeUint64 returns true if n is prime. Typical run time is few tens of µs.
     85 //
     86 // SPRP bases: http://miller-rabin.appspot.com
     87 func IsPrimeUint64(n uint64) bool {
     88 	switch {
     89 	case n%2 == 0:
     90 		return n == 2
     91 	case n%3 == 0:
     92 		return n == 3
     93 	case n%5 == 0:
     94 		return n == 5
     95 	case n%7 == 0:
     96 		return n == 7
     97 	case n%11 == 0:
     98 		return n == 11
     99 	case n%13 == 0:
    100 		return n == 13
    101 	case n%17 == 0:
    102 		return n == 17
    103 	case n%19 == 0:
    104 		return n == 19
    105 	case n%23 == 0:
    106 		return n == 23
    107 	case n%29 == 0:
    108 		return n == 29
    109 	case n%31 == 0:
    110 		return n == 31
    111 	case n%37 == 0:
    112 		return n == 37
    113 	case n%41 == 0:
    114 		return n == 41
    115 	case n%43 == 0:
    116 		return n == 43
    117 	case n%47 == 0:
    118 		return n == 47
    119 	case n%53 == 0:
    120 		return n == 53
    121 	case n%59 == 0:
    122 		return n == 59
    123 	case n%61 == 0:
    124 		return n == 61
    125 	case n%67 == 0:
    126 		return n == 67
    127 	case n%71 == 0:
    128 		return n == 71
    129 	case n%73 == 0:
    130 		return n == 73
    131 	case n%79 == 0:
    132 		return n == 79
    133 	case n%83 == 0:
    134 		return n == 83
    135 	case n%89 == 0:
    136 		return n == 89 // Benchmarked optimum
    137 	case n <= math.MaxUint16:
    138 		return IsPrimeUint16(uint16(n))
    139 	case n <= math.MaxUint32:
    140 		return ProbablyPrimeUint32(uint32(n), 11000544) &&
    141 			ProbablyPrimeUint32(uint32(n), 31481107)
    142 	case n < 105936894253:
    143 		return ProbablyPrimeUint64_32(n, 2) &&
    144 			ProbablyPrimeUint64_32(n, 1005905886) &&
    145 			ProbablyPrimeUint64_32(n, 1340600841)
    146 	case n < 31858317218647:
    147 		return ProbablyPrimeUint64_32(n, 2) &&
    148 			ProbablyPrimeUint64_32(n, 642735) &&
    149 			ProbablyPrimeUint64_32(n, 553174392) &&
    150 			ProbablyPrimeUint64_32(n, 3046413974)
    151 	case n < 3071837692357849:
    152 		return ProbablyPrimeUint64_32(n, 2) &&
    153 			ProbablyPrimeUint64_32(n, 75088) &&
    154 			ProbablyPrimeUint64_32(n, 642735) &&
    155 			ProbablyPrimeUint64_32(n, 203659041) &&
    156 			ProbablyPrimeUint64_32(n, 3613982119)
    157 	default:
    158 		return ProbablyPrimeUint64_32(n, 2) &&
    159 			ProbablyPrimeUint64_32(n, 325) &&
    160 			ProbablyPrimeUint64_32(n, 9375) &&
    161 			ProbablyPrimeUint64_32(n, 28178) &&
    162 			ProbablyPrimeUint64_32(n, 450775) &&
    163 			ProbablyPrimeUint64_32(n, 9780504) &&
    164 			ProbablyPrimeUint64_32(n, 1795265022)
    165 	}
    166 }
    167 
    168 // NextPrime returns first prime > n and true if successful or an undefined value and false if there
    169 // is no next prime in the uint32 limits. Typical run time is about 2 µs.
    170 func NextPrime(n uint32) (p uint32, ok bool) {
    171 	switch {
    172 	case n < 65521:
    173 		p16, _ := NextPrimeUint16(uint16(n))
    174 		return uint32(p16), true
    175 	case n >= math.MaxUint32-4:
    176 		return
    177 	}
    178 
    179 	n++
    180 	var d0, d uint32
    181 	switch mod := n % 6; mod {
    182 	case 0:
    183 		d0, d = 1, 4
    184 	case 1:
    185 		d = 4
    186 	case 2, 3, 4:
    187 		d0, d = 5-mod, 2
    188 	case 5:
    189 		d = 2
    190 	}
    191 
    192 	p = n + d0
    193 	if p < n { // overflow
    194 		return
    195 	}
    196 
    197 	for {
    198 		if IsPrime(p) {
    199 			return p, true
    200 		}
    201 
    202 		p0 := p
    203 		p += d
    204 		if p < p0 { // overflow
    205 			break
    206 		}
    207 
    208 		d ^= 6
    209 	}
    210 	return
    211 }
    212 
    213 // NextPrimeUint64 returns first prime > n and true if successful or an undefined value and false if there
    214 // is no next prime in the uint64 limits. Typical run time is in hundreds of µs.
    215 func NextPrimeUint64(n uint64) (p uint64, ok bool) {
    216 	switch {
    217 	case n < 65521:
    218 		p16, _ := NextPrimeUint16(uint16(n))
    219 		return uint64(p16), true
    220 	case n >= 18446744073709551557: // last uint64 prime
    221 		return
    222 	}
    223 
    224 	n++
    225 	var d0, d uint64
    226 	switch mod := n % 6; mod {
    227 	case 0:
    228 		d0, d = 1, 4
    229 	case 1:
    230 		d = 4
    231 	case 2, 3, 4:
    232 		d0, d = 5-mod, 2
    233 	case 5:
    234 		d = 2
    235 	}
    236 
    237 	p = n + d0
    238 	if p < n { // overflow
    239 		return
    240 	}
    241 
    242 	for {
    243 		if ok = IsPrimeUint64(p); ok {
    244 			break
    245 		}
    246 
    247 		p0 := p
    248 		p += d
    249 		if p < p0 { // overflow
    250 			break
    251 		}
    252 
    253 		d ^= 6
    254 	}
    255 	return
    256 }
    257 
    258 // FactorTerm is one term of an integer factorization.
    259 type FactorTerm struct {
    260 	Prime uint32 // The divisor
    261 	Power uint32 // Term == Prime^Power
    262 }
    263 
    264 // FactorTerms represent a factorization of an integer
    265 type FactorTerms []FactorTerm
    266 
    267 // FactorInt returns prime factorization of n > 1 or nil otherwise.
    268 // Resulting factors are ordered by Prime. Typical run time is few µs.
    269 func FactorInt(n uint32) (f FactorTerms) {
    270 	switch {
    271 	case n < 2:
    272 		return
    273 	case IsPrime(n):
    274 		return []FactorTerm{{n, 1}}
    275 	}
    276 
    277 	f, w := make([]FactorTerm, 9), 0
    278 	for p := 2; p < len(primes16); p += int(primes16[p]) {
    279 		if uint(p*p) > uint(n) {
    280 			break
    281 		}
    282 
    283 		power := uint32(0)
    284 		for n%uint32(p) == 0 {
    285 			n /= uint32(p)
    286 			power++
    287 		}
    288 		if power != 0 {
    289 			f[w] = FactorTerm{uint32(p), power}
    290 			w++
    291 		}
    292 		if n == 1 {
    293 			break
    294 		}
    295 	}
    296 	if n != 1 {
    297 		f[w] = FactorTerm{n, 1}
    298 		w++
    299 	}
    300 	return f[:w]
    301 }
    302 
    303 // PrimorialProductsUint32 returns a slice of numbers in [lo, hi] which are a
    304 // product of max 'max' primorials. The slice is not sorted.
    305 //
    306 // See also: http://en.wikipedia.org/wiki/Primorial
    307 func PrimorialProductsUint32(lo, hi, max uint32) (r []uint32) {
    308 	lo64, hi64 := int64(lo), int64(hi)
    309 	if max > 31 { // N/A
    310 		max = 31
    311 	}
    312 
    313 	var f func(int64, int64, uint32)
    314 	f = func(n, p int64, emax uint32) {
    315 		e := uint32(1)
    316 		for n <= hi64 && e <= emax {
    317 			n *= p
    318 			if n >= lo64 && n <= hi64 {
    319 				r = append(r, uint32(n))
    320 			}
    321 			if n < hi64 {
    322 				p, _ := NextPrime(uint32(p))
    323 				f(n, int64(p), e)
    324 			}
    325 			e++
    326 		}
    327 	}
    328 
    329 	f(1, 2, max)
    330 	return
    331 }