huffman.go (7605B)
1 // Copyright 2014 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package vp8l 6 7 import ( 8 "io" 9 ) 10 11 // reverseBits reverses the bits in a byte. 12 var reverseBits = [256]uint8{ 13 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0, 14 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8, 15 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, 16 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, 17 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, 18 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, 19 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, 20 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, 21 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, 22 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, 23 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, 24 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd, 25 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3, 26 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, 27 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, 28 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff, 29 } 30 31 // hNode is a node in a Huffman tree. 32 type hNode struct { 33 // symbol is the symbol held by this node. 34 symbol uint32 35 // children, if positive, is the hTree.nodes index of the first of 36 // this node's two children. Zero means an uninitialized node, 37 // and -1 means a leaf node. 38 children int32 39 } 40 41 const leafNode = -1 42 43 // lutSize is the log-2 size of an hTree's look-up table. 44 const lutSize, lutMask = 7, 1<<7 - 1 45 46 // hTree is a Huffman tree. 47 type hTree struct { 48 // nodes are the nodes of the Huffman tree. During construction, 49 // len(nodes) grows from 1 up to cap(nodes) by steps of two. 50 // After construction, len(nodes) == cap(nodes), and both equal 51 // 2*theNumberOfSymbols - 1. 52 nodes []hNode 53 // lut is a look-up table for walking the nodes. The x in lut[x] is 54 // the next lutSize bits in the bit-stream. The low 8 bits of lut[x] 55 // equals 1 plus the number of bits in the next code, or 0 if the 56 // next code requires more than lutSize bits. The high 24 bits are: 57 // - the symbol, if the code requires lutSize or fewer bits, or 58 // - the hTree.nodes index to start the tree traversal from, if 59 // the next code requires more than lutSize bits. 60 lut [1 << lutSize]uint32 61 } 62 63 // insert inserts into the hTree a symbol whose encoding is the least 64 // significant codeLength bits of code. 65 func (h *hTree) insert(symbol uint32, code uint32, codeLength uint32) error { 66 if symbol > 0xffff || codeLength > 0xfe { 67 return errInvalidHuffmanTree 68 } 69 baseCode := uint32(0) 70 if codeLength > lutSize { 71 baseCode = uint32(reverseBits[(code>>(codeLength-lutSize))&0xff]) >> (8 - lutSize) 72 } else { 73 baseCode = uint32(reverseBits[code&0xff]) >> (8 - codeLength) 74 for i := 0; i < 1<<(lutSize-codeLength); i++ { 75 h.lut[baseCode|uint32(i)<<codeLength] = symbol<<8 | (codeLength + 1) 76 } 77 } 78 79 n := uint32(0) 80 for jump := lutSize; codeLength > 0; { 81 codeLength-- 82 if int(n) > len(h.nodes) { 83 return errInvalidHuffmanTree 84 } 85 switch h.nodes[n].children { 86 case leafNode: 87 return errInvalidHuffmanTree 88 case 0: 89 if len(h.nodes) == cap(h.nodes) { 90 return errInvalidHuffmanTree 91 } 92 // Create two empty child nodes. 93 h.nodes[n].children = int32(len(h.nodes)) 94 h.nodes = h.nodes[:len(h.nodes)+2] 95 } 96 n = uint32(h.nodes[n].children) + 1&(code>>codeLength) 97 jump-- 98 if jump == 0 && h.lut[baseCode] == 0 { 99 h.lut[baseCode] = n << 8 100 } 101 } 102 103 switch h.nodes[n].children { 104 case leafNode: 105 // No-op. 106 case 0: 107 // Turn the uninitialized node into a leaf. 108 h.nodes[n].children = leafNode 109 default: 110 return errInvalidHuffmanTree 111 } 112 h.nodes[n].symbol = symbol 113 return nil 114 } 115 116 // codeLengthsToCodes returns the canonical Huffman codes implied by the 117 // sequence of code lengths. 118 func codeLengthsToCodes(codeLengths []uint32) ([]uint32, error) { 119 maxCodeLength := uint32(0) 120 for _, cl := range codeLengths { 121 if maxCodeLength < cl { 122 maxCodeLength = cl 123 } 124 } 125 const maxAllowedCodeLength = 15 126 if len(codeLengths) == 0 || maxCodeLength > maxAllowedCodeLength { 127 return nil, errInvalidHuffmanTree 128 } 129 histogram := [maxAllowedCodeLength + 1]uint32{} 130 for _, cl := range codeLengths { 131 histogram[cl]++ 132 } 133 currCode, nextCodes := uint32(0), [maxAllowedCodeLength + 1]uint32{} 134 for cl := 1; cl < len(nextCodes); cl++ { 135 currCode = (currCode + histogram[cl-1]) << 1 136 nextCodes[cl] = currCode 137 } 138 codes := make([]uint32, len(codeLengths)) 139 for symbol, cl := range codeLengths { 140 if cl > 0 { 141 codes[symbol] = nextCodes[cl] 142 nextCodes[cl]++ 143 } 144 } 145 return codes, nil 146 } 147 148 // build builds a canonical Huffman tree from the given code lengths. 149 func (h *hTree) build(codeLengths []uint32) error { 150 // Calculate the number of symbols. 151 var nSymbols, lastSymbol uint32 152 for symbol, cl := range codeLengths { 153 if cl != 0 { 154 nSymbols++ 155 lastSymbol = uint32(symbol) 156 } 157 } 158 if nSymbols == 0 { 159 return errInvalidHuffmanTree 160 } 161 h.nodes = make([]hNode, 1, 2*nSymbols-1) 162 // Handle the trivial case. 163 if nSymbols == 1 { 164 if len(codeLengths) <= int(lastSymbol) { 165 return errInvalidHuffmanTree 166 } 167 return h.insert(lastSymbol, 0, 0) 168 } 169 // Handle the non-trivial case. 170 codes, err := codeLengthsToCodes(codeLengths) 171 if err != nil { 172 return err 173 } 174 for symbol, cl := range codeLengths { 175 if cl > 0 { 176 if err := h.insert(uint32(symbol), codes[symbol], cl); err != nil { 177 return err 178 } 179 } 180 } 181 return nil 182 } 183 184 // buildSimple builds a Huffman tree with 1 or 2 symbols. 185 func (h *hTree) buildSimple(nSymbols uint32, symbols [2]uint32, alphabetSize uint32) error { 186 h.nodes = make([]hNode, 1, 2*nSymbols-1) 187 for i := uint32(0); i < nSymbols; i++ { 188 if symbols[i] >= alphabetSize { 189 return errInvalidHuffmanTree 190 } 191 if err := h.insert(symbols[i], i, nSymbols-1); err != nil { 192 return err 193 } 194 } 195 return nil 196 } 197 198 // next returns the next Huffman-encoded symbol from the bit-stream d. 199 func (h *hTree) next(d *decoder) (uint32, error) { 200 var n uint32 201 // Read enough bits so that we can use the look-up table. 202 if d.nBits < lutSize { 203 c, err := d.r.ReadByte() 204 if err != nil { 205 if err == io.EOF { 206 // There are no more bytes of data, but we may still be able 207 // to read the next symbol out of the previously read bits. 208 goto slowPath 209 } 210 return 0, err 211 } 212 d.bits |= uint32(c) << d.nBits 213 d.nBits += 8 214 } 215 // Use the look-up table. 216 n = h.lut[d.bits&lutMask] 217 if b := n & 0xff; b != 0 { 218 b-- 219 d.bits >>= b 220 d.nBits -= b 221 return n >> 8, nil 222 } 223 n >>= 8 224 d.bits >>= lutSize 225 d.nBits -= lutSize 226 227 slowPath: 228 for h.nodes[n].children != leafNode { 229 if d.nBits == 0 { 230 c, err := d.r.ReadByte() 231 if err != nil { 232 if err == io.EOF { 233 err = io.ErrUnexpectedEOF 234 } 235 return 0, err 236 } 237 d.bits = uint32(c) 238 d.nBits = 8 239 } 240 n = uint32(h.nodes[n].children) + 1&d.bits 241 d.bits >>= 1 242 d.nBits-- 243 } 244 return h.nodes[n].symbol, nil 245 }