gtsocial-umbx

Unnamed repository; edit this file 'description' to name the repository.
Log | Files | Refs | README | LICENSE

keys.go (37824B)


      1 // Copyright 2012 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package ssh
      6 
      7 import (
      8 	"bytes"
      9 	"crypto"
     10 	"crypto/aes"
     11 	"crypto/cipher"
     12 	"crypto/dsa"
     13 	"crypto/ecdsa"
     14 	"crypto/elliptic"
     15 	"crypto/md5"
     16 	"crypto/rsa"
     17 	"crypto/sha256"
     18 	"crypto/x509"
     19 	"encoding/asn1"
     20 	"encoding/base64"
     21 	"encoding/hex"
     22 	"encoding/pem"
     23 	"errors"
     24 	"fmt"
     25 	"io"
     26 	"math/big"
     27 	"strings"
     28 
     29 	"golang.org/x/crypto/ed25519"
     30 	"golang.org/x/crypto/ssh/internal/bcrypt_pbkdf"
     31 )
     32 
     33 // Public key algorithms names. These values can appear in PublicKey.Type,
     34 // ClientConfig.HostKeyAlgorithms, Signature.Format, or as AlgorithmSigner
     35 // arguments.
     36 const (
     37 	KeyAlgoRSA        = "ssh-rsa"
     38 	KeyAlgoDSA        = "ssh-dss"
     39 	KeyAlgoECDSA256   = "ecdsa-sha2-nistp256"
     40 	KeyAlgoSKECDSA256 = "sk-ecdsa-sha2-nistp256@openssh.com"
     41 	KeyAlgoECDSA384   = "ecdsa-sha2-nistp384"
     42 	KeyAlgoECDSA521   = "ecdsa-sha2-nistp521"
     43 	KeyAlgoED25519    = "ssh-ed25519"
     44 	KeyAlgoSKED25519  = "sk-ssh-ed25519@openssh.com"
     45 
     46 	// KeyAlgoRSASHA256 and KeyAlgoRSASHA512 are only public key algorithms, not
     47 	// public key formats, so they can't appear as a PublicKey.Type. The
     48 	// corresponding PublicKey.Type is KeyAlgoRSA. See RFC 8332, Section 2.
     49 	KeyAlgoRSASHA256 = "rsa-sha2-256"
     50 	KeyAlgoRSASHA512 = "rsa-sha2-512"
     51 )
     52 
     53 const (
     54 	// Deprecated: use KeyAlgoRSA.
     55 	SigAlgoRSA = KeyAlgoRSA
     56 	// Deprecated: use KeyAlgoRSASHA256.
     57 	SigAlgoRSASHA2256 = KeyAlgoRSASHA256
     58 	// Deprecated: use KeyAlgoRSASHA512.
     59 	SigAlgoRSASHA2512 = KeyAlgoRSASHA512
     60 )
     61 
     62 // parsePubKey parses a public key of the given algorithm.
     63 // Use ParsePublicKey for keys with prepended algorithm.
     64 func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, err error) {
     65 	switch algo {
     66 	case KeyAlgoRSA:
     67 		return parseRSA(in)
     68 	case KeyAlgoDSA:
     69 		return parseDSA(in)
     70 	case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
     71 		return parseECDSA(in)
     72 	case KeyAlgoSKECDSA256:
     73 		return parseSKECDSA(in)
     74 	case KeyAlgoED25519:
     75 		return parseED25519(in)
     76 	case KeyAlgoSKED25519:
     77 		return parseSKEd25519(in)
     78 	case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoSKECDSA256v01, CertAlgoED25519v01, CertAlgoSKED25519v01:
     79 		cert, err := parseCert(in, certKeyAlgoNames[algo])
     80 		if err != nil {
     81 			return nil, nil, err
     82 		}
     83 		return cert, nil, nil
     84 	}
     85 	return nil, nil, fmt.Errorf("ssh: unknown key algorithm: %v", algo)
     86 }
     87 
     88 // parseAuthorizedKey parses a public key in OpenSSH authorized_keys format
     89 // (see sshd(8) manual page) once the options and key type fields have been
     90 // removed.
     91 func parseAuthorizedKey(in []byte) (out PublicKey, comment string, err error) {
     92 	in = bytes.TrimSpace(in)
     93 
     94 	i := bytes.IndexAny(in, " \t")
     95 	if i == -1 {
     96 		i = len(in)
     97 	}
     98 	base64Key := in[:i]
     99 
    100 	key := make([]byte, base64.StdEncoding.DecodedLen(len(base64Key)))
    101 	n, err := base64.StdEncoding.Decode(key, base64Key)
    102 	if err != nil {
    103 		return nil, "", err
    104 	}
    105 	key = key[:n]
    106 	out, err = ParsePublicKey(key)
    107 	if err != nil {
    108 		return nil, "", err
    109 	}
    110 	comment = string(bytes.TrimSpace(in[i:]))
    111 	return out, comment, nil
    112 }
    113 
    114 // ParseKnownHosts parses an entry in the format of the known_hosts file.
    115 //
    116 // The known_hosts format is documented in the sshd(8) manual page. This
    117 // function will parse a single entry from in. On successful return, marker
    118 // will contain the optional marker value (i.e. "cert-authority" or "revoked")
    119 // or else be empty, hosts will contain the hosts that this entry matches,
    120 // pubKey will contain the public key and comment will contain any trailing
    121 // comment at the end of the line. See the sshd(8) manual page for the various
    122 // forms that a host string can take.
    123 //
    124 // The unparsed remainder of the input will be returned in rest. This function
    125 // can be called repeatedly to parse multiple entries.
    126 //
    127 // If no entries were found in the input then err will be io.EOF. Otherwise a
    128 // non-nil err value indicates a parse error.
    129 func ParseKnownHosts(in []byte) (marker string, hosts []string, pubKey PublicKey, comment string, rest []byte, err error) {
    130 	for len(in) > 0 {
    131 		end := bytes.IndexByte(in, '\n')
    132 		if end != -1 {
    133 			rest = in[end+1:]
    134 			in = in[:end]
    135 		} else {
    136 			rest = nil
    137 		}
    138 
    139 		end = bytes.IndexByte(in, '\r')
    140 		if end != -1 {
    141 			in = in[:end]
    142 		}
    143 
    144 		in = bytes.TrimSpace(in)
    145 		if len(in) == 0 || in[0] == '#' {
    146 			in = rest
    147 			continue
    148 		}
    149 
    150 		i := bytes.IndexAny(in, " \t")
    151 		if i == -1 {
    152 			in = rest
    153 			continue
    154 		}
    155 
    156 		// Strip out the beginning of the known_host key.
    157 		// This is either an optional marker or a (set of) hostname(s).
    158 		keyFields := bytes.Fields(in)
    159 		if len(keyFields) < 3 || len(keyFields) > 5 {
    160 			return "", nil, nil, "", nil, errors.New("ssh: invalid entry in known_hosts data")
    161 		}
    162 
    163 		// keyFields[0] is either "@cert-authority", "@revoked" or a comma separated
    164 		// list of hosts
    165 		marker := ""
    166 		if keyFields[0][0] == '@' {
    167 			marker = string(keyFields[0][1:])
    168 			keyFields = keyFields[1:]
    169 		}
    170 
    171 		hosts := string(keyFields[0])
    172 		// keyFields[1] contains the key type (e.g. “ssh-rsa”).
    173 		// However, that information is duplicated inside the
    174 		// base64-encoded key and so is ignored here.
    175 
    176 		key := bytes.Join(keyFields[2:], []byte(" "))
    177 		if pubKey, comment, err = parseAuthorizedKey(key); err != nil {
    178 			return "", nil, nil, "", nil, err
    179 		}
    180 
    181 		return marker, strings.Split(hosts, ","), pubKey, comment, rest, nil
    182 	}
    183 
    184 	return "", nil, nil, "", nil, io.EOF
    185 }
    186 
    187 // ParseAuthorizedKey parses a public key from an authorized_keys
    188 // file used in OpenSSH according to the sshd(8) manual page.
    189 func ParseAuthorizedKey(in []byte) (out PublicKey, comment string, options []string, rest []byte, err error) {
    190 	for len(in) > 0 {
    191 		end := bytes.IndexByte(in, '\n')
    192 		if end != -1 {
    193 			rest = in[end+1:]
    194 			in = in[:end]
    195 		} else {
    196 			rest = nil
    197 		}
    198 
    199 		end = bytes.IndexByte(in, '\r')
    200 		if end != -1 {
    201 			in = in[:end]
    202 		}
    203 
    204 		in = bytes.TrimSpace(in)
    205 		if len(in) == 0 || in[0] == '#' {
    206 			in = rest
    207 			continue
    208 		}
    209 
    210 		i := bytes.IndexAny(in, " \t")
    211 		if i == -1 {
    212 			in = rest
    213 			continue
    214 		}
    215 
    216 		if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
    217 			return out, comment, options, rest, nil
    218 		}
    219 
    220 		// No key type recognised. Maybe there's an options field at
    221 		// the beginning.
    222 		var b byte
    223 		inQuote := false
    224 		var candidateOptions []string
    225 		optionStart := 0
    226 		for i, b = range in {
    227 			isEnd := !inQuote && (b == ' ' || b == '\t')
    228 			if (b == ',' && !inQuote) || isEnd {
    229 				if i-optionStart > 0 {
    230 					candidateOptions = append(candidateOptions, string(in[optionStart:i]))
    231 				}
    232 				optionStart = i + 1
    233 			}
    234 			if isEnd {
    235 				break
    236 			}
    237 			if b == '"' && (i == 0 || (i > 0 && in[i-1] != '\\')) {
    238 				inQuote = !inQuote
    239 			}
    240 		}
    241 		for i < len(in) && (in[i] == ' ' || in[i] == '\t') {
    242 			i++
    243 		}
    244 		if i == len(in) {
    245 			// Invalid line: unmatched quote
    246 			in = rest
    247 			continue
    248 		}
    249 
    250 		in = in[i:]
    251 		i = bytes.IndexAny(in, " \t")
    252 		if i == -1 {
    253 			in = rest
    254 			continue
    255 		}
    256 
    257 		if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
    258 			options = candidateOptions
    259 			return out, comment, options, rest, nil
    260 		}
    261 
    262 		in = rest
    263 		continue
    264 	}
    265 
    266 	return nil, "", nil, nil, errors.New("ssh: no key found")
    267 }
    268 
    269 // ParsePublicKey parses an SSH public key formatted for use in
    270 // the SSH wire protocol according to RFC 4253, section 6.6.
    271 func ParsePublicKey(in []byte) (out PublicKey, err error) {
    272 	algo, in, ok := parseString(in)
    273 	if !ok {
    274 		return nil, errShortRead
    275 	}
    276 	var rest []byte
    277 	out, rest, err = parsePubKey(in, string(algo))
    278 	if len(rest) > 0 {
    279 		return nil, errors.New("ssh: trailing junk in public key")
    280 	}
    281 
    282 	return out, err
    283 }
    284 
    285 // MarshalAuthorizedKey serializes key for inclusion in an OpenSSH
    286 // authorized_keys file. The return value ends with newline.
    287 func MarshalAuthorizedKey(key PublicKey) []byte {
    288 	b := &bytes.Buffer{}
    289 	b.WriteString(key.Type())
    290 	b.WriteByte(' ')
    291 	e := base64.NewEncoder(base64.StdEncoding, b)
    292 	e.Write(key.Marshal())
    293 	e.Close()
    294 	b.WriteByte('\n')
    295 	return b.Bytes()
    296 }
    297 
    298 // PublicKey represents a public key using an unspecified algorithm.
    299 //
    300 // Some PublicKeys provided by this package also implement CryptoPublicKey.
    301 type PublicKey interface {
    302 	// Type returns the key format name, e.g. "ssh-rsa".
    303 	Type() string
    304 
    305 	// Marshal returns the serialized key data in SSH wire format, with the name
    306 	// prefix. To unmarshal the returned data, use the ParsePublicKey function.
    307 	Marshal() []byte
    308 
    309 	// Verify that sig is a signature on the given data using this key. This
    310 	// method will hash the data appropriately first. sig.Format is allowed to
    311 	// be any signature algorithm compatible with the key type, the caller
    312 	// should check if it has more stringent requirements.
    313 	Verify(data []byte, sig *Signature) error
    314 }
    315 
    316 // CryptoPublicKey, if implemented by a PublicKey,
    317 // returns the underlying crypto.PublicKey form of the key.
    318 type CryptoPublicKey interface {
    319 	CryptoPublicKey() crypto.PublicKey
    320 }
    321 
    322 // A Signer can create signatures that verify against a public key.
    323 //
    324 // Some Signers provided by this package also implement AlgorithmSigner.
    325 type Signer interface {
    326 	// PublicKey returns the associated PublicKey.
    327 	PublicKey() PublicKey
    328 
    329 	// Sign returns a signature for the given data. This method will hash the
    330 	// data appropriately first. The signature algorithm is expected to match
    331 	// the key format returned by the PublicKey.Type method (and not to be any
    332 	// alternative algorithm supported by the key format).
    333 	Sign(rand io.Reader, data []byte) (*Signature, error)
    334 }
    335 
    336 // An AlgorithmSigner is a Signer that also supports specifying an algorithm to
    337 // use for signing.
    338 //
    339 // An AlgorithmSigner can't advertise the algorithms it supports, so it should
    340 // be prepared to be invoked with every algorithm supported by the public key
    341 // format.
    342 type AlgorithmSigner interface {
    343 	Signer
    344 
    345 	// SignWithAlgorithm is like Signer.Sign, but allows specifying a desired
    346 	// signing algorithm. Callers may pass an empty string for the algorithm in
    347 	// which case the AlgorithmSigner will use a default algorithm. This default
    348 	// doesn't currently control any behavior in this package.
    349 	SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error)
    350 }
    351 
    352 type rsaPublicKey rsa.PublicKey
    353 
    354 func (r *rsaPublicKey) Type() string {
    355 	return "ssh-rsa"
    356 }
    357 
    358 // parseRSA parses an RSA key according to RFC 4253, section 6.6.
    359 func parseRSA(in []byte) (out PublicKey, rest []byte, err error) {
    360 	var w struct {
    361 		E    *big.Int
    362 		N    *big.Int
    363 		Rest []byte `ssh:"rest"`
    364 	}
    365 	if err := Unmarshal(in, &w); err != nil {
    366 		return nil, nil, err
    367 	}
    368 
    369 	if w.E.BitLen() > 24 {
    370 		return nil, nil, errors.New("ssh: exponent too large")
    371 	}
    372 	e := w.E.Int64()
    373 	if e < 3 || e&1 == 0 {
    374 		return nil, nil, errors.New("ssh: incorrect exponent")
    375 	}
    376 
    377 	var key rsa.PublicKey
    378 	key.E = int(e)
    379 	key.N = w.N
    380 	return (*rsaPublicKey)(&key), w.Rest, nil
    381 }
    382 
    383 func (r *rsaPublicKey) Marshal() []byte {
    384 	e := new(big.Int).SetInt64(int64(r.E))
    385 	// RSA publickey struct layout should match the struct used by
    386 	// parseRSACert in the x/crypto/ssh/agent package.
    387 	wirekey := struct {
    388 		Name string
    389 		E    *big.Int
    390 		N    *big.Int
    391 	}{
    392 		KeyAlgoRSA,
    393 		e,
    394 		r.N,
    395 	}
    396 	return Marshal(&wirekey)
    397 }
    398 
    399 func (r *rsaPublicKey) Verify(data []byte, sig *Signature) error {
    400 	supportedAlgos := algorithmsForKeyFormat(r.Type())
    401 	if !contains(supportedAlgos, sig.Format) {
    402 		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, r.Type())
    403 	}
    404 	hash := hashFuncs[sig.Format]
    405 	h := hash.New()
    406 	h.Write(data)
    407 	digest := h.Sum(nil)
    408 	return rsa.VerifyPKCS1v15((*rsa.PublicKey)(r), hash, digest, sig.Blob)
    409 }
    410 
    411 func (r *rsaPublicKey) CryptoPublicKey() crypto.PublicKey {
    412 	return (*rsa.PublicKey)(r)
    413 }
    414 
    415 type dsaPublicKey dsa.PublicKey
    416 
    417 func (k *dsaPublicKey) Type() string {
    418 	return "ssh-dss"
    419 }
    420 
    421 func checkDSAParams(param *dsa.Parameters) error {
    422 	// SSH specifies FIPS 186-2, which only provided a single size
    423 	// (1024 bits) DSA key. FIPS 186-3 allows for larger key
    424 	// sizes, which would confuse SSH.
    425 	if l := param.P.BitLen(); l != 1024 {
    426 		return fmt.Errorf("ssh: unsupported DSA key size %d", l)
    427 	}
    428 
    429 	return nil
    430 }
    431 
    432 // parseDSA parses an DSA key according to RFC 4253, section 6.6.
    433 func parseDSA(in []byte) (out PublicKey, rest []byte, err error) {
    434 	var w struct {
    435 		P, Q, G, Y *big.Int
    436 		Rest       []byte `ssh:"rest"`
    437 	}
    438 	if err := Unmarshal(in, &w); err != nil {
    439 		return nil, nil, err
    440 	}
    441 
    442 	param := dsa.Parameters{
    443 		P: w.P,
    444 		Q: w.Q,
    445 		G: w.G,
    446 	}
    447 	if err := checkDSAParams(&param); err != nil {
    448 		return nil, nil, err
    449 	}
    450 
    451 	key := &dsaPublicKey{
    452 		Parameters: param,
    453 		Y:          w.Y,
    454 	}
    455 	return key, w.Rest, nil
    456 }
    457 
    458 func (k *dsaPublicKey) Marshal() []byte {
    459 	// DSA publickey struct layout should match the struct used by
    460 	// parseDSACert in the x/crypto/ssh/agent package.
    461 	w := struct {
    462 		Name       string
    463 		P, Q, G, Y *big.Int
    464 	}{
    465 		k.Type(),
    466 		k.P,
    467 		k.Q,
    468 		k.G,
    469 		k.Y,
    470 	}
    471 
    472 	return Marshal(&w)
    473 }
    474 
    475 func (k *dsaPublicKey) Verify(data []byte, sig *Signature) error {
    476 	if sig.Format != k.Type() {
    477 		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
    478 	}
    479 	h := hashFuncs[sig.Format].New()
    480 	h.Write(data)
    481 	digest := h.Sum(nil)
    482 
    483 	// Per RFC 4253, section 6.6,
    484 	// The value for 'dss_signature_blob' is encoded as a string containing
    485 	// r, followed by s (which are 160-bit integers, without lengths or
    486 	// padding, unsigned, and in network byte order).
    487 	// For DSS purposes, sig.Blob should be exactly 40 bytes in length.
    488 	if len(sig.Blob) != 40 {
    489 		return errors.New("ssh: DSA signature parse error")
    490 	}
    491 	r := new(big.Int).SetBytes(sig.Blob[:20])
    492 	s := new(big.Int).SetBytes(sig.Blob[20:])
    493 	if dsa.Verify((*dsa.PublicKey)(k), digest, r, s) {
    494 		return nil
    495 	}
    496 	return errors.New("ssh: signature did not verify")
    497 }
    498 
    499 func (k *dsaPublicKey) CryptoPublicKey() crypto.PublicKey {
    500 	return (*dsa.PublicKey)(k)
    501 }
    502 
    503 type dsaPrivateKey struct {
    504 	*dsa.PrivateKey
    505 }
    506 
    507 func (k *dsaPrivateKey) PublicKey() PublicKey {
    508 	return (*dsaPublicKey)(&k.PrivateKey.PublicKey)
    509 }
    510 
    511 func (k *dsaPrivateKey) Sign(rand io.Reader, data []byte) (*Signature, error) {
    512 	return k.SignWithAlgorithm(rand, data, k.PublicKey().Type())
    513 }
    514 
    515 func (k *dsaPrivateKey) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
    516 	if algorithm != "" && algorithm != k.PublicKey().Type() {
    517 		return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm)
    518 	}
    519 
    520 	h := hashFuncs[k.PublicKey().Type()].New()
    521 	h.Write(data)
    522 	digest := h.Sum(nil)
    523 	r, s, err := dsa.Sign(rand, k.PrivateKey, digest)
    524 	if err != nil {
    525 		return nil, err
    526 	}
    527 
    528 	sig := make([]byte, 40)
    529 	rb := r.Bytes()
    530 	sb := s.Bytes()
    531 
    532 	copy(sig[20-len(rb):20], rb)
    533 	copy(sig[40-len(sb):], sb)
    534 
    535 	return &Signature{
    536 		Format: k.PublicKey().Type(),
    537 		Blob:   sig,
    538 	}, nil
    539 }
    540 
    541 type ecdsaPublicKey ecdsa.PublicKey
    542 
    543 func (k *ecdsaPublicKey) Type() string {
    544 	return "ecdsa-sha2-" + k.nistID()
    545 }
    546 
    547 func (k *ecdsaPublicKey) nistID() string {
    548 	switch k.Params().BitSize {
    549 	case 256:
    550 		return "nistp256"
    551 	case 384:
    552 		return "nistp384"
    553 	case 521:
    554 		return "nistp521"
    555 	}
    556 	panic("ssh: unsupported ecdsa key size")
    557 }
    558 
    559 type ed25519PublicKey ed25519.PublicKey
    560 
    561 func (k ed25519PublicKey) Type() string {
    562 	return KeyAlgoED25519
    563 }
    564 
    565 func parseED25519(in []byte) (out PublicKey, rest []byte, err error) {
    566 	var w struct {
    567 		KeyBytes []byte
    568 		Rest     []byte `ssh:"rest"`
    569 	}
    570 
    571 	if err := Unmarshal(in, &w); err != nil {
    572 		return nil, nil, err
    573 	}
    574 
    575 	if l := len(w.KeyBytes); l != ed25519.PublicKeySize {
    576 		return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l)
    577 	}
    578 
    579 	return ed25519PublicKey(w.KeyBytes), w.Rest, nil
    580 }
    581 
    582 func (k ed25519PublicKey) Marshal() []byte {
    583 	w := struct {
    584 		Name     string
    585 		KeyBytes []byte
    586 	}{
    587 		KeyAlgoED25519,
    588 		[]byte(k),
    589 	}
    590 	return Marshal(&w)
    591 }
    592 
    593 func (k ed25519PublicKey) Verify(b []byte, sig *Signature) error {
    594 	if sig.Format != k.Type() {
    595 		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
    596 	}
    597 	if l := len(k); l != ed25519.PublicKeySize {
    598 		return fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l)
    599 	}
    600 
    601 	if ok := ed25519.Verify(ed25519.PublicKey(k), b, sig.Blob); !ok {
    602 		return errors.New("ssh: signature did not verify")
    603 	}
    604 
    605 	return nil
    606 }
    607 
    608 func (k ed25519PublicKey) CryptoPublicKey() crypto.PublicKey {
    609 	return ed25519.PublicKey(k)
    610 }
    611 
    612 func supportedEllipticCurve(curve elliptic.Curve) bool {
    613 	return curve == elliptic.P256() || curve == elliptic.P384() || curve == elliptic.P521()
    614 }
    615 
    616 // parseECDSA parses an ECDSA key according to RFC 5656, section 3.1.
    617 func parseECDSA(in []byte) (out PublicKey, rest []byte, err error) {
    618 	var w struct {
    619 		Curve    string
    620 		KeyBytes []byte
    621 		Rest     []byte `ssh:"rest"`
    622 	}
    623 
    624 	if err := Unmarshal(in, &w); err != nil {
    625 		return nil, nil, err
    626 	}
    627 
    628 	key := new(ecdsa.PublicKey)
    629 
    630 	switch w.Curve {
    631 	case "nistp256":
    632 		key.Curve = elliptic.P256()
    633 	case "nistp384":
    634 		key.Curve = elliptic.P384()
    635 	case "nistp521":
    636 		key.Curve = elliptic.P521()
    637 	default:
    638 		return nil, nil, errors.New("ssh: unsupported curve")
    639 	}
    640 
    641 	key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
    642 	if key.X == nil || key.Y == nil {
    643 		return nil, nil, errors.New("ssh: invalid curve point")
    644 	}
    645 	return (*ecdsaPublicKey)(key), w.Rest, nil
    646 }
    647 
    648 func (k *ecdsaPublicKey) Marshal() []byte {
    649 	// See RFC 5656, section 3.1.
    650 	keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
    651 	// ECDSA publickey struct layout should match the struct used by
    652 	// parseECDSACert in the x/crypto/ssh/agent package.
    653 	w := struct {
    654 		Name string
    655 		ID   string
    656 		Key  []byte
    657 	}{
    658 		k.Type(),
    659 		k.nistID(),
    660 		keyBytes,
    661 	}
    662 
    663 	return Marshal(&w)
    664 }
    665 
    666 func (k *ecdsaPublicKey) Verify(data []byte, sig *Signature) error {
    667 	if sig.Format != k.Type() {
    668 		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
    669 	}
    670 
    671 	h := hashFuncs[sig.Format].New()
    672 	h.Write(data)
    673 	digest := h.Sum(nil)
    674 
    675 	// Per RFC 5656, section 3.1.2,
    676 	// The ecdsa_signature_blob value has the following specific encoding:
    677 	//    mpint    r
    678 	//    mpint    s
    679 	var ecSig struct {
    680 		R *big.Int
    681 		S *big.Int
    682 	}
    683 
    684 	if err := Unmarshal(sig.Blob, &ecSig); err != nil {
    685 		return err
    686 	}
    687 
    688 	if ecdsa.Verify((*ecdsa.PublicKey)(k), digest, ecSig.R, ecSig.S) {
    689 		return nil
    690 	}
    691 	return errors.New("ssh: signature did not verify")
    692 }
    693 
    694 func (k *ecdsaPublicKey) CryptoPublicKey() crypto.PublicKey {
    695 	return (*ecdsa.PublicKey)(k)
    696 }
    697 
    698 // skFields holds the additional fields present in U2F/FIDO2 signatures.
    699 // See openssh/PROTOCOL.u2f 'SSH U2F Signatures' for details.
    700 type skFields struct {
    701 	// Flags contains U2F/FIDO2 flags such as 'user present'
    702 	Flags byte
    703 	// Counter is a monotonic signature counter which can be
    704 	// used to detect concurrent use of a private key, should
    705 	// it be extracted from hardware.
    706 	Counter uint32
    707 }
    708 
    709 type skECDSAPublicKey struct {
    710 	// application is a URL-like string, typically "ssh:" for SSH.
    711 	// see openssh/PROTOCOL.u2f for details.
    712 	application string
    713 	ecdsa.PublicKey
    714 }
    715 
    716 func (k *skECDSAPublicKey) Type() string {
    717 	return KeyAlgoSKECDSA256
    718 }
    719 
    720 func (k *skECDSAPublicKey) nistID() string {
    721 	return "nistp256"
    722 }
    723 
    724 func parseSKECDSA(in []byte) (out PublicKey, rest []byte, err error) {
    725 	var w struct {
    726 		Curve       string
    727 		KeyBytes    []byte
    728 		Application string
    729 		Rest        []byte `ssh:"rest"`
    730 	}
    731 
    732 	if err := Unmarshal(in, &w); err != nil {
    733 		return nil, nil, err
    734 	}
    735 
    736 	key := new(skECDSAPublicKey)
    737 	key.application = w.Application
    738 
    739 	if w.Curve != "nistp256" {
    740 		return nil, nil, errors.New("ssh: unsupported curve")
    741 	}
    742 	key.Curve = elliptic.P256()
    743 
    744 	key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
    745 	if key.X == nil || key.Y == nil {
    746 		return nil, nil, errors.New("ssh: invalid curve point")
    747 	}
    748 
    749 	return key, w.Rest, nil
    750 }
    751 
    752 func (k *skECDSAPublicKey) Marshal() []byte {
    753 	// See RFC 5656, section 3.1.
    754 	keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
    755 	w := struct {
    756 		Name        string
    757 		ID          string
    758 		Key         []byte
    759 		Application string
    760 	}{
    761 		k.Type(),
    762 		k.nistID(),
    763 		keyBytes,
    764 		k.application,
    765 	}
    766 
    767 	return Marshal(&w)
    768 }
    769 
    770 func (k *skECDSAPublicKey) Verify(data []byte, sig *Signature) error {
    771 	if sig.Format != k.Type() {
    772 		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
    773 	}
    774 
    775 	h := hashFuncs[sig.Format].New()
    776 	h.Write([]byte(k.application))
    777 	appDigest := h.Sum(nil)
    778 
    779 	h.Reset()
    780 	h.Write(data)
    781 	dataDigest := h.Sum(nil)
    782 
    783 	var ecSig struct {
    784 		R *big.Int
    785 		S *big.Int
    786 	}
    787 	if err := Unmarshal(sig.Blob, &ecSig); err != nil {
    788 		return err
    789 	}
    790 
    791 	var skf skFields
    792 	if err := Unmarshal(sig.Rest, &skf); err != nil {
    793 		return err
    794 	}
    795 
    796 	blob := struct {
    797 		ApplicationDigest []byte `ssh:"rest"`
    798 		Flags             byte
    799 		Counter           uint32
    800 		MessageDigest     []byte `ssh:"rest"`
    801 	}{
    802 		appDigest,
    803 		skf.Flags,
    804 		skf.Counter,
    805 		dataDigest,
    806 	}
    807 
    808 	original := Marshal(blob)
    809 
    810 	h.Reset()
    811 	h.Write(original)
    812 	digest := h.Sum(nil)
    813 
    814 	if ecdsa.Verify((*ecdsa.PublicKey)(&k.PublicKey), digest, ecSig.R, ecSig.S) {
    815 		return nil
    816 	}
    817 	return errors.New("ssh: signature did not verify")
    818 }
    819 
    820 type skEd25519PublicKey struct {
    821 	// application is a URL-like string, typically "ssh:" for SSH.
    822 	// see openssh/PROTOCOL.u2f for details.
    823 	application string
    824 	ed25519.PublicKey
    825 }
    826 
    827 func (k *skEd25519PublicKey) Type() string {
    828 	return KeyAlgoSKED25519
    829 }
    830 
    831 func parseSKEd25519(in []byte) (out PublicKey, rest []byte, err error) {
    832 	var w struct {
    833 		KeyBytes    []byte
    834 		Application string
    835 		Rest        []byte `ssh:"rest"`
    836 	}
    837 
    838 	if err := Unmarshal(in, &w); err != nil {
    839 		return nil, nil, err
    840 	}
    841 
    842 	if l := len(w.KeyBytes); l != ed25519.PublicKeySize {
    843 		return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l)
    844 	}
    845 
    846 	key := new(skEd25519PublicKey)
    847 	key.application = w.Application
    848 	key.PublicKey = ed25519.PublicKey(w.KeyBytes)
    849 
    850 	return key, w.Rest, nil
    851 }
    852 
    853 func (k *skEd25519PublicKey) Marshal() []byte {
    854 	w := struct {
    855 		Name        string
    856 		KeyBytes    []byte
    857 		Application string
    858 	}{
    859 		KeyAlgoSKED25519,
    860 		[]byte(k.PublicKey),
    861 		k.application,
    862 	}
    863 	return Marshal(&w)
    864 }
    865 
    866 func (k *skEd25519PublicKey) Verify(data []byte, sig *Signature) error {
    867 	if sig.Format != k.Type() {
    868 		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
    869 	}
    870 	if l := len(k.PublicKey); l != ed25519.PublicKeySize {
    871 		return fmt.Errorf("invalid size %d for Ed25519 public key", l)
    872 	}
    873 
    874 	h := hashFuncs[sig.Format].New()
    875 	h.Write([]byte(k.application))
    876 	appDigest := h.Sum(nil)
    877 
    878 	h.Reset()
    879 	h.Write(data)
    880 	dataDigest := h.Sum(nil)
    881 
    882 	var edSig struct {
    883 		Signature []byte `ssh:"rest"`
    884 	}
    885 
    886 	if err := Unmarshal(sig.Blob, &edSig); err != nil {
    887 		return err
    888 	}
    889 
    890 	var skf skFields
    891 	if err := Unmarshal(sig.Rest, &skf); err != nil {
    892 		return err
    893 	}
    894 
    895 	blob := struct {
    896 		ApplicationDigest []byte `ssh:"rest"`
    897 		Flags             byte
    898 		Counter           uint32
    899 		MessageDigest     []byte `ssh:"rest"`
    900 	}{
    901 		appDigest,
    902 		skf.Flags,
    903 		skf.Counter,
    904 		dataDigest,
    905 	}
    906 
    907 	original := Marshal(blob)
    908 
    909 	if ok := ed25519.Verify(k.PublicKey, original, edSig.Signature); !ok {
    910 		return errors.New("ssh: signature did not verify")
    911 	}
    912 
    913 	return nil
    914 }
    915 
    916 // NewSignerFromKey takes an *rsa.PrivateKey, *dsa.PrivateKey,
    917 // *ecdsa.PrivateKey or any other crypto.Signer and returns a
    918 // corresponding Signer instance. ECDSA keys must use P-256, P-384 or
    919 // P-521. DSA keys must use parameter size L1024N160.
    920 func NewSignerFromKey(key interface{}) (Signer, error) {
    921 	switch key := key.(type) {
    922 	case crypto.Signer:
    923 		return NewSignerFromSigner(key)
    924 	case *dsa.PrivateKey:
    925 		return newDSAPrivateKey(key)
    926 	default:
    927 		return nil, fmt.Errorf("ssh: unsupported key type %T", key)
    928 	}
    929 }
    930 
    931 func newDSAPrivateKey(key *dsa.PrivateKey) (Signer, error) {
    932 	if err := checkDSAParams(&key.PublicKey.Parameters); err != nil {
    933 		return nil, err
    934 	}
    935 
    936 	return &dsaPrivateKey{key}, nil
    937 }
    938 
    939 type wrappedSigner struct {
    940 	signer crypto.Signer
    941 	pubKey PublicKey
    942 }
    943 
    944 // NewSignerFromSigner takes any crypto.Signer implementation and
    945 // returns a corresponding Signer interface. This can be used, for
    946 // example, with keys kept in hardware modules.
    947 func NewSignerFromSigner(signer crypto.Signer) (Signer, error) {
    948 	pubKey, err := NewPublicKey(signer.Public())
    949 	if err != nil {
    950 		return nil, err
    951 	}
    952 
    953 	return &wrappedSigner{signer, pubKey}, nil
    954 }
    955 
    956 func (s *wrappedSigner) PublicKey() PublicKey {
    957 	return s.pubKey
    958 }
    959 
    960 func (s *wrappedSigner) Sign(rand io.Reader, data []byte) (*Signature, error) {
    961 	return s.SignWithAlgorithm(rand, data, s.pubKey.Type())
    962 }
    963 
    964 func (s *wrappedSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
    965 	if algorithm == "" {
    966 		algorithm = s.pubKey.Type()
    967 	}
    968 
    969 	supportedAlgos := algorithmsForKeyFormat(s.pubKey.Type())
    970 	if !contains(supportedAlgos, algorithm) {
    971 		return nil, fmt.Errorf("ssh: unsupported signature algorithm %q for key format %q", algorithm, s.pubKey.Type())
    972 	}
    973 
    974 	hashFunc := hashFuncs[algorithm]
    975 	var digest []byte
    976 	if hashFunc != 0 {
    977 		h := hashFunc.New()
    978 		h.Write(data)
    979 		digest = h.Sum(nil)
    980 	} else {
    981 		digest = data
    982 	}
    983 
    984 	signature, err := s.signer.Sign(rand, digest, hashFunc)
    985 	if err != nil {
    986 		return nil, err
    987 	}
    988 
    989 	// crypto.Signer.Sign is expected to return an ASN.1-encoded signature
    990 	// for ECDSA and DSA, but that's not the encoding expected by SSH, so
    991 	// re-encode.
    992 	switch s.pubKey.(type) {
    993 	case *ecdsaPublicKey, *dsaPublicKey:
    994 		type asn1Signature struct {
    995 			R, S *big.Int
    996 		}
    997 		asn1Sig := new(asn1Signature)
    998 		_, err := asn1.Unmarshal(signature, asn1Sig)
    999 		if err != nil {
   1000 			return nil, err
   1001 		}
   1002 
   1003 		switch s.pubKey.(type) {
   1004 		case *ecdsaPublicKey:
   1005 			signature = Marshal(asn1Sig)
   1006 
   1007 		case *dsaPublicKey:
   1008 			signature = make([]byte, 40)
   1009 			r := asn1Sig.R.Bytes()
   1010 			s := asn1Sig.S.Bytes()
   1011 			copy(signature[20-len(r):20], r)
   1012 			copy(signature[40-len(s):40], s)
   1013 		}
   1014 	}
   1015 
   1016 	return &Signature{
   1017 		Format: algorithm,
   1018 		Blob:   signature,
   1019 	}, nil
   1020 }
   1021 
   1022 // NewPublicKey takes an *rsa.PublicKey, *dsa.PublicKey, *ecdsa.PublicKey,
   1023 // or ed25519.PublicKey returns a corresponding PublicKey instance.
   1024 // ECDSA keys must use P-256, P-384 or P-521.
   1025 func NewPublicKey(key interface{}) (PublicKey, error) {
   1026 	switch key := key.(type) {
   1027 	case *rsa.PublicKey:
   1028 		return (*rsaPublicKey)(key), nil
   1029 	case *ecdsa.PublicKey:
   1030 		if !supportedEllipticCurve(key.Curve) {
   1031 			return nil, errors.New("ssh: only P-256, P-384 and P-521 EC keys are supported")
   1032 		}
   1033 		return (*ecdsaPublicKey)(key), nil
   1034 	case *dsa.PublicKey:
   1035 		return (*dsaPublicKey)(key), nil
   1036 	case ed25519.PublicKey:
   1037 		if l := len(key); l != ed25519.PublicKeySize {
   1038 			return nil, fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l)
   1039 		}
   1040 		return ed25519PublicKey(key), nil
   1041 	default:
   1042 		return nil, fmt.Errorf("ssh: unsupported key type %T", key)
   1043 	}
   1044 }
   1045 
   1046 // ParsePrivateKey returns a Signer from a PEM encoded private key. It supports
   1047 // the same keys as ParseRawPrivateKey. If the private key is encrypted, it
   1048 // will return a PassphraseMissingError.
   1049 func ParsePrivateKey(pemBytes []byte) (Signer, error) {
   1050 	key, err := ParseRawPrivateKey(pemBytes)
   1051 	if err != nil {
   1052 		return nil, err
   1053 	}
   1054 
   1055 	return NewSignerFromKey(key)
   1056 }
   1057 
   1058 // ParsePrivateKeyWithPassphrase returns a Signer from a PEM encoded private
   1059 // key and passphrase. It supports the same keys as
   1060 // ParseRawPrivateKeyWithPassphrase.
   1061 func ParsePrivateKeyWithPassphrase(pemBytes, passphrase []byte) (Signer, error) {
   1062 	key, err := ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase)
   1063 	if err != nil {
   1064 		return nil, err
   1065 	}
   1066 
   1067 	return NewSignerFromKey(key)
   1068 }
   1069 
   1070 // encryptedBlock tells whether a private key is
   1071 // encrypted by examining its Proc-Type header
   1072 // for a mention of ENCRYPTED
   1073 // according to RFC 1421 Section 4.6.1.1.
   1074 func encryptedBlock(block *pem.Block) bool {
   1075 	return strings.Contains(block.Headers["Proc-Type"], "ENCRYPTED")
   1076 }
   1077 
   1078 // A PassphraseMissingError indicates that parsing this private key requires a
   1079 // passphrase. Use ParsePrivateKeyWithPassphrase.
   1080 type PassphraseMissingError struct {
   1081 	// PublicKey will be set if the private key format includes an unencrypted
   1082 	// public key along with the encrypted private key.
   1083 	PublicKey PublicKey
   1084 }
   1085 
   1086 func (*PassphraseMissingError) Error() string {
   1087 	return "ssh: this private key is passphrase protected"
   1088 }
   1089 
   1090 // ParseRawPrivateKey returns a private key from a PEM encoded private key. It supports
   1091 // RSA, DSA, ECDSA, and Ed25519 private keys in PKCS#1, PKCS#8, OpenSSL, and OpenSSH
   1092 // formats. If the private key is encrypted, it will return a PassphraseMissingError.
   1093 func ParseRawPrivateKey(pemBytes []byte) (interface{}, error) {
   1094 	block, _ := pem.Decode(pemBytes)
   1095 	if block == nil {
   1096 		return nil, errors.New("ssh: no key found")
   1097 	}
   1098 
   1099 	if encryptedBlock(block) {
   1100 		return nil, &PassphraseMissingError{}
   1101 	}
   1102 
   1103 	switch block.Type {
   1104 	case "RSA PRIVATE KEY":
   1105 		return x509.ParsePKCS1PrivateKey(block.Bytes)
   1106 	// RFC5208 - https://tools.ietf.org/html/rfc5208
   1107 	case "PRIVATE KEY":
   1108 		return x509.ParsePKCS8PrivateKey(block.Bytes)
   1109 	case "EC PRIVATE KEY":
   1110 		return x509.ParseECPrivateKey(block.Bytes)
   1111 	case "DSA PRIVATE KEY":
   1112 		return ParseDSAPrivateKey(block.Bytes)
   1113 	case "OPENSSH PRIVATE KEY":
   1114 		return parseOpenSSHPrivateKey(block.Bytes, unencryptedOpenSSHKey)
   1115 	default:
   1116 		return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)
   1117 	}
   1118 }
   1119 
   1120 // ParseRawPrivateKeyWithPassphrase returns a private key decrypted with
   1121 // passphrase from a PEM encoded private key. If the passphrase is wrong, it
   1122 // will return x509.IncorrectPasswordError.
   1123 func ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase []byte) (interface{}, error) {
   1124 	block, _ := pem.Decode(pemBytes)
   1125 	if block == nil {
   1126 		return nil, errors.New("ssh: no key found")
   1127 	}
   1128 
   1129 	if block.Type == "OPENSSH PRIVATE KEY" {
   1130 		return parseOpenSSHPrivateKey(block.Bytes, passphraseProtectedOpenSSHKey(passphrase))
   1131 	}
   1132 
   1133 	if !encryptedBlock(block) || !x509.IsEncryptedPEMBlock(block) {
   1134 		return nil, errors.New("ssh: not an encrypted key")
   1135 	}
   1136 
   1137 	buf, err := x509.DecryptPEMBlock(block, passphrase)
   1138 	if err != nil {
   1139 		if err == x509.IncorrectPasswordError {
   1140 			return nil, err
   1141 		}
   1142 		return nil, fmt.Errorf("ssh: cannot decode encrypted private keys: %v", err)
   1143 	}
   1144 
   1145 	switch block.Type {
   1146 	case "RSA PRIVATE KEY":
   1147 		return x509.ParsePKCS1PrivateKey(buf)
   1148 	case "EC PRIVATE KEY":
   1149 		return x509.ParseECPrivateKey(buf)
   1150 	case "DSA PRIVATE KEY":
   1151 		return ParseDSAPrivateKey(buf)
   1152 	default:
   1153 		return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)
   1154 	}
   1155 }
   1156 
   1157 // ParseDSAPrivateKey returns a DSA private key from its ASN.1 DER encoding, as
   1158 // specified by the OpenSSL DSA man page.
   1159 func ParseDSAPrivateKey(der []byte) (*dsa.PrivateKey, error) {
   1160 	var k struct {
   1161 		Version int
   1162 		P       *big.Int
   1163 		Q       *big.Int
   1164 		G       *big.Int
   1165 		Pub     *big.Int
   1166 		Priv    *big.Int
   1167 	}
   1168 	rest, err := asn1.Unmarshal(der, &k)
   1169 	if err != nil {
   1170 		return nil, errors.New("ssh: failed to parse DSA key: " + err.Error())
   1171 	}
   1172 	if len(rest) > 0 {
   1173 		return nil, errors.New("ssh: garbage after DSA key")
   1174 	}
   1175 
   1176 	return &dsa.PrivateKey{
   1177 		PublicKey: dsa.PublicKey{
   1178 			Parameters: dsa.Parameters{
   1179 				P: k.P,
   1180 				Q: k.Q,
   1181 				G: k.G,
   1182 			},
   1183 			Y: k.Pub,
   1184 		},
   1185 		X: k.Priv,
   1186 	}, nil
   1187 }
   1188 
   1189 func unencryptedOpenSSHKey(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) {
   1190 	if kdfName != "none" || cipherName != "none" {
   1191 		return nil, &PassphraseMissingError{}
   1192 	}
   1193 	if kdfOpts != "" {
   1194 		return nil, errors.New("ssh: invalid openssh private key")
   1195 	}
   1196 	return privKeyBlock, nil
   1197 }
   1198 
   1199 func passphraseProtectedOpenSSHKey(passphrase []byte) openSSHDecryptFunc {
   1200 	return func(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) {
   1201 		if kdfName == "none" || cipherName == "none" {
   1202 			return nil, errors.New("ssh: key is not password protected")
   1203 		}
   1204 		if kdfName != "bcrypt" {
   1205 			return nil, fmt.Errorf("ssh: unknown KDF %q, only supports %q", kdfName, "bcrypt")
   1206 		}
   1207 
   1208 		var opts struct {
   1209 			Salt   string
   1210 			Rounds uint32
   1211 		}
   1212 		if err := Unmarshal([]byte(kdfOpts), &opts); err != nil {
   1213 			return nil, err
   1214 		}
   1215 
   1216 		k, err := bcrypt_pbkdf.Key(passphrase, []byte(opts.Salt), int(opts.Rounds), 32+16)
   1217 		if err != nil {
   1218 			return nil, err
   1219 		}
   1220 		key, iv := k[:32], k[32:]
   1221 
   1222 		c, err := aes.NewCipher(key)
   1223 		if err != nil {
   1224 			return nil, err
   1225 		}
   1226 		switch cipherName {
   1227 		case "aes256-ctr":
   1228 			ctr := cipher.NewCTR(c, iv)
   1229 			ctr.XORKeyStream(privKeyBlock, privKeyBlock)
   1230 		case "aes256-cbc":
   1231 			if len(privKeyBlock)%c.BlockSize() != 0 {
   1232 				return nil, fmt.Errorf("ssh: invalid encrypted private key length, not a multiple of the block size")
   1233 			}
   1234 			cbc := cipher.NewCBCDecrypter(c, iv)
   1235 			cbc.CryptBlocks(privKeyBlock, privKeyBlock)
   1236 		default:
   1237 			return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q or %q", cipherName, "aes256-ctr", "aes256-cbc")
   1238 		}
   1239 
   1240 		return privKeyBlock, nil
   1241 	}
   1242 }
   1243 
   1244 type openSSHDecryptFunc func(CipherName, KdfName, KdfOpts string, PrivKeyBlock []byte) ([]byte, error)
   1245 
   1246 // parseOpenSSHPrivateKey parses an OpenSSH private key, using the decrypt
   1247 // function to unwrap the encrypted portion. unencryptedOpenSSHKey can be used
   1248 // as the decrypt function to parse an unencrypted private key. See
   1249 // https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.key.
   1250 func parseOpenSSHPrivateKey(key []byte, decrypt openSSHDecryptFunc) (crypto.PrivateKey, error) {
   1251 	const magic = "openssh-key-v1\x00"
   1252 	if len(key) < len(magic) || string(key[:len(magic)]) != magic {
   1253 		return nil, errors.New("ssh: invalid openssh private key format")
   1254 	}
   1255 	remaining := key[len(magic):]
   1256 
   1257 	var w struct {
   1258 		CipherName   string
   1259 		KdfName      string
   1260 		KdfOpts      string
   1261 		NumKeys      uint32
   1262 		PubKey       []byte
   1263 		PrivKeyBlock []byte
   1264 	}
   1265 
   1266 	if err := Unmarshal(remaining, &w); err != nil {
   1267 		return nil, err
   1268 	}
   1269 	if w.NumKeys != 1 {
   1270 		// We only support single key files, and so does OpenSSH.
   1271 		// https://github.com/openssh/openssh-portable/blob/4103a3ec7/sshkey.c#L4171
   1272 		return nil, errors.New("ssh: multi-key files are not supported")
   1273 	}
   1274 
   1275 	privKeyBlock, err := decrypt(w.CipherName, w.KdfName, w.KdfOpts, w.PrivKeyBlock)
   1276 	if err != nil {
   1277 		if err, ok := err.(*PassphraseMissingError); ok {
   1278 			pub, errPub := ParsePublicKey(w.PubKey)
   1279 			if errPub != nil {
   1280 				return nil, fmt.Errorf("ssh: failed to parse embedded public key: %v", errPub)
   1281 			}
   1282 			err.PublicKey = pub
   1283 		}
   1284 		return nil, err
   1285 	}
   1286 
   1287 	pk1 := struct {
   1288 		Check1  uint32
   1289 		Check2  uint32
   1290 		Keytype string
   1291 		Rest    []byte `ssh:"rest"`
   1292 	}{}
   1293 
   1294 	if err := Unmarshal(privKeyBlock, &pk1); err != nil || pk1.Check1 != pk1.Check2 {
   1295 		if w.CipherName != "none" {
   1296 			return nil, x509.IncorrectPasswordError
   1297 		}
   1298 		return nil, errors.New("ssh: malformed OpenSSH key")
   1299 	}
   1300 
   1301 	switch pk1.Keytype {
   1302 	case KeyAlgoRSA:
   1303 		// https://github.com/openssh/openssh-portable/blob/master/sshkey.c#L2760-L2773
   1304 		key := struct {
   1305 			N       *big.Int
   1306 			E       *big.Int
   1307 			D       *big.Int
   1308 			Iqmp    *big.Int
   1309 			P       *big.Int
   1310 			Q       *big.Int
   1311 			Comment string
   1312 			Pad     []byte `ssh:"rest"`
   1313 		}{}
   1314 
   1315 		if err := Unmarshal(pk1.Rest, &key); err != nil {
   1316 			return nil, err
   1317 		}
   1318 
   1319 		if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
   1320 			return nil, err
   1321 		}
   1322 
   1323 		pk := &rsa.PrivateKey{
   1324 			PublicKey: rsa.PublicKey{
   1325 				N: key.N,
   1326 				E: int(key.E.Int64()),
   1327 			},
   1328 			D:      key.D,
   1329 			Primes: []*big.Int{key.P, key.Q},
   1330 		}
   1331 
   1332 		if err := pk.Validate(); err != nil {
   1333 			return nil, err
   1334 		}
   1335 
   1336 		pk.Precompute()
   1337 
   1338 		return pk, nil
   1339 	case KeyAlgoED25519:
   1340 		key := struct {
   1341 			Pub     []byte
   1342 			Priv    []byte
   1343 			Comment string
   1344 			Pad     []byte `ssh:"rest"`
   1345 		}{}
   1346 
   1347 		if err := Unmarshal(pk1.Rest, &key); err != nil {
   1348 			return nil, err
   1349 		}
   1350 
   1351 		if len(key.Priv) != ed25519.PrivateKeySize {
   1352 			return nil, errors.New("ssh: private key unexpected length")
   1353 		}
   1354 
   1355 		if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
   1356 			return nil, err
   1357 		}
   1358 
   1359 		pk := ed25519.PrivateKey(make([]byte, ed25519.PrivateKeySize))
   1360 		copy(pk, key.Priv)
   1361 		return &pk, nil
   1362 	case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
   1363 		key := struct {
   1364 			Curve   string
   1365 			Pub     []byte
   1366 			D       *big.Int
   1367 			Comment string
   1368 			Pad     []byte `ssh:"rest"`
   1369 		}{}
   1370 
   1371 		if err := Unmarshal(pk1.Rest, &key); err != nil {
   1372 			return nil, err
   1373 		}
   1374 
   1375 		if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
   1376 			return nil, err
   1377 		}
   1378 
   1379 		var curve elliptic.Curve
   1380 		switch key.Curve {
   1381 		case "nistp256":
   1382 			curve = elliptic.P256()
   1383 		case "nistp384":
   1384 			curve = elliptic.P384()
   1385 		case "nistp521":
   1386 			curve = elliptic.P521()
   1387 		default:
   1388 			return nil, errors.New("ssh: unhandled elliptic curve: " + key.Curve)
   1389 		}
   1390 
   1391 		X, Y := elliptic.Unmarshal(curve, key.Pub)
   1392 		if X == nil || Y == nil {
   1393 			return nil, errors.New("ssh: failed to unmarshal public key")
   1394 		}
   1395 
   1396 		if key.D.Cmp(curve.Params().N) >= 0 {
   1397 			return nil, errors.New("ssh: scalar is out of range")
   1398 		}
   1399 
   1400 		x, y := curve.ScalarBaseMult(key.D.Bytes())
   1401 		if x.Cmp(X) != 0 || y.Cmp(Y) != 0 {
   1402 			return nil, errors.New("ssh: public key does not match private key")
   1403 		}
   1404 
   1405 		return &ecdsa.PrivateKey{
   1406 			PublicKey: ecdsa.PublicKey{
   1407 				Curve: curve,
   1408 				X:     X,
   1409 				Y:     Y,
   1410 			},
   1411 			D: key.D,
   1412 		}, nil
   1413 	default:
   1414 		return nil, errors.New("ssh: unhandled key type")
   1415 	}
   1416 }
   1417 
   1418 func checkOpenSSHKeyPadding(pad []byte) error {
   1419 	for i, b := range pad {
   1420 		if int(b) != i+1 {
   1421 			return errors.New("ssh: padding not as expected")
   1422 		}
   1423 	}
   1424 	return nil
   1425 }
   1426 
   1427 // FingerprintLegacyMD5 returns the user presentation of the key's
   1428 // fingerprint as described by RFC 4716 section 4.
   1429 func FingerprintLegacyMD5(pubKey PublicKey) string {
   1430 	md5sum := md5.Sum(pubKey.Marshal())
   1431 	hexarray := make([]string, len(md5sum))
   1432 	for i, c := range md5sum {
   1433 		hexarray[i] = hex.EncodeToString([]byte{c})
   1434 	}
   1435 	return strings.Join(hexarray, ":")
   1436 }
   1437 
   1438 // FingerprintSHA256 returns the user presentation of the key's
   1439 // fingerprint as unpadded base64 encoded sha256 hash.
   1440 // This format was introduced from OpenSSH 6.8.
   1441 // https://www.openssh.com/txt/release-6.8
   1442 // https://tools.ietf.org/html/rfc4648#section-3.2 (unpadded base64 encoding)
   1443 func FingerprintSHA256(pubKey PublicKey) string {
   1444 	sha256sum := sha256.Sum256(pubKey.Marshal())
   1445 	hash := base64.RawStdEncoding.EncodeToString(sha256sum[:])
   1446 	return "SHA256:" + hash
   1447 }