gtsocial-umbx

Unnamed repository; edit this file 'description' to name the repository.
Log | Files | Refs | README | LICENSE

handshake.go (19753B)


      1 // Copyright 2013 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package ssh
      6 
      7 import (
      8 	"crypto/rand"
      9 	"errors"
     10 	"fmt"
     11 	"io"
     12 	"log"
     13 	"net"
     14 	"sync"
     15 )
     16 
     17 // debugHandshake, if set, prints messages sent and received.  Key
     18 // exchange messages are printed as if DH were used, so the debug
     19 // messages are wrong when using ECDH.
     20 const debugHandshake = false
     21 
     22 // chanSize sets the amount of buffering SSH connections. This is
     23 // primarily for testing: setting chanSize=0 uncovers deadlocks more
     24 // quickly.
     25 const chanSize = 16
     26 
     27 // keyingTransport is a packet based transport that supports key
     28 // changes. It need not be thread-safe. It should pass through
     29 // msgNewKeys in both directions.
     30 type keyingTransport interface {
     31 	packetConn
     32 
     33 	// prepareKeyChange sets up a key change. The key change for a
     34 	// direction will be effected if a msgNewKeys message is sent
     35 	// or received.
     36 	prepareKeyChange(*algorithms, *kexResult) error
     37 }
     38 
     39 // handshakeTransport implements rekeying on top of a keyingTransport
     40 // and offers a thread-safe writePacket() interface.
     41 type handshakeTransport struct {
     42 	conn   keyingTransport
     43 	config *Config
     44 
     45 	serverVersion []byte
     46 	clientVersion []byte
     47 
     48 	// hostKeys is non-empty if we are the server. In that case,
     49 	// it contains all host keys that can be used to sign the
     50 	// connection.
     51 	hostKeys []Signer
     52 
     53 	// hostKeyAlgorithms is non-empty if we are the client. In that case,
     54 	// we accept these key types from the server as host key.
     55 	hostKeyAlgorithms []string
     56 
     57 	// On read error, incoming is closed, and readError is set.
     58 	incoming  chan []byte
     59 	readError error
     60 
     61 	mu               sync.Mutex
     62 	writeError       error
     63 	sentInitPacket   []byte
     64 	sentInitMsg      *kexInitMsg
     65 	pendingPackets   [][]byte // Used when a key exchange is in progress.
     66 	writePacketsLeft uint32
     67 	writeBytesLeft   int64
     68 
     69 	// If the read loop wants to schedule a kex, it pings this
     70 	// channel, and the write loop will send out a kex
     71 	// message.
     72 	requestKex chan struct{}
     73 
     74 	// If the other side requests or confirms a kex, its kexInit
     75 	// packet is sent here for the write loop to find it.
     76 	startKex    chan *pendingKex
     77 	kexLoopDone chan struct{} // closed (with writeError non-nil) when kexLoop exits
     78 
     79 	// data for host key checking
     80 	hostKeyCallback HostKeyCallback
     81 	dialAddress     string
     82 	remoteAddr      net.Addr
     83 
     84 	// bannerCallback is non-empty if we are the client and it has been set in
     85 	// ClientConfig. In that case it is called during the user authentication
     86 	// dance to handle a custom server's message.
     87 	bannerCallback BannerCallback
     88 
     89 	// Algorithms agreed in the last key exchange.
     90 	algorithms *algorithms
     91 
     92 	// Counters exclusively owned by readLoop.
     93 	readPacketsLeft uint32
     94 	readBytesLeft   int64
     95 
     96 	// The session ID or nil if first kex did not complete yet.
     97 	sessionID []byte
     98 }
     99 
    100 type pendingKex struct {
    101 	otherInit []byte
    102 	done      chan error
    103 }
    104 
    105 func newHandshakeTransport(conn keyingTransport, config *Config, clientVersion, serverVersion []byte) *handshakeTransport {
    106 	t := &handshakeTransport{
    107 		conn:          conn,
    108 		serverVersion: serverVersion,
    109 		clientVersion: clientVersion,
    110 		incoming:      make(chan []byte, chanSize),
    111 		requestKex:    make(chan struct{}, 1),
    112 		startKex:      make(chan *pendingKex),
    113 		kexLoopDone:   make(chan struct{}),
    114 
    115 		config: config,
    116 	}
    117 	t.resetReadThresholds()
    118 	t.resetWriteThresholds()
    119 
    120 	// We always start with a mandatory key exchange.
    121 	t.requestKex <- struct{}{}
    122 	return t
    123 }
    124 
    125 func newClientTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ClientConfig, dialAddr string, addr net.Addr) *handshakeTransport {
    126 	t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)
    127 	t.dialAddress = dialAddr
    128 	t.remoteAddr = addr
    129 	t.hostKeyCallback = config.HostKeyCallback
    130 	t.bannerCallback = config.BannerCallback
    131 	if config.HostKeyAlgorithms != nil {
    132 		t.hostKeyAlgorithms = config.HostKeyAlgorithms
    133 	} else {
    134 		t.hostKeyAlgorithms = supportedHostKeyAlgos
    135 	}
    136 	go t.readLoop()
    137 	go t.kexLoop()
    138 	return t
    139 }
    140 
    141 func newServerTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ServerConfig) *handshakeTransport {
    142 	t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)
    143 	t.hostKeys = config.hostKeys
    144 	go t.readLoop()
    145 	go t.kexLoop()
    146 	return t
    147 }
    148 
    149 func (t *handshakeTransport) getSessionID() []byte {
    150 	return t.sessionID
    151 }
    152 
    153 // waitSession waits for the session to be established. This should be
    154 // the first thing to call after instantiating handshakeTransport.
    155 func (t *handshakeTransport) waitSession() error {
    156 	p, err := t.readPacket()
    157 	if err != nil {
    158 		return err
    159 	}
    160 	if p[0] != msgNewKeys {
    161 		return fmt.Errorf("ssh: first packet should be msgNewKeys")
    162 	}
    163 
    164 	return nil
    165 }
    166 
    167 func (t *handshakeTransport) id() string {
    168 	if len(t.hostKeys) > 0 {
    169 		return "server"
    170 	}
    171 	return "client"
    172 }
    173 
    174 func (t *handshakeTransport) printPacket(p []byte, write bool) {
    175 	action := "got"
    176 	if write {
    177 		action = "sent"
    178 	}
    179 
    180 	if p[0] == msgChannelData || p[0] == msgChannelExtendedData {
    181 		log.Printf("%s %s data (packet %d bytes)", t.id(), action, len(p))
    182 	} else {
    183 		msg, err := decode(p)
    184 		log.Printf("%s %s %T %v (%v)", t.id(), action, msg, msg, err)
    185 	}
    186 }
    187 
    188 func (t *handshakeTransport) readPacket() ([]byte, error) {
    189 	p, ok := <-t.incoming
    190 	if !ok {
    191 		return nil, t.readError
    192 	}
    193 	return p, nil
    194 }
    195 
    196 func (t *handshakeTransport) readLoop() {
    197 	first := true
    198 	for {
    199 		p, err := t.readOnePacket(first)
    200 		first = false
    201 		if err != nil {
    202 			t.readError = err
    203 			close(t.incoming)
    204 			break
    205 		}
    206 		if p[0] == msgIgnore || p[0] == msgDebug {
    207 			continue
    208 		}
    209 		t.incoming <- p
    210 	}
    211 
    212 	// Stop writers too.
    213 	t.recordWriteError(t.readError)
    214 
    215 	// Unblock the writer should it wait for this.
    216 	close(t.startKex)
    217 
    218 	// Don't close t.requestKex; it's also written to from writePacket.
    219 }
    220 
    221 func (t *handshakeTransport) pushPacket(p []byte) error {
    222 	if debugHandshake {
    223 		t.printPacket(p, true)
    224 	}
    225 	return t.conn.writePacket(p)
    226 }
    227 
    228 func (t *handshakeTransport) getWriteError() error {
    229 	t.mu.Lock()
    230 	defer t.mu.Unlock()
    231 	return t.writeError
    232 }
    233 
    234 func (t *handshakeTransport) recordWriteError(err error) {
    235 	t.mu.Lock()
    236 	defer t.mu.Unlock()
    237 	if t.writeError == nil && err != nil {
    238 		t.writeError = err
    239 	}
    240 }
    241 
    242 func (t *handshakeTransport) requestKeyExchange() {
    243 	select {
    244 	case t.requestKex <- struct{}{}:
    245 	default:
    246 		// something already requested a kex, so do nothing.
    247 	}
    248 }
    249 
    250 func (t *handshakeTransport) resetWriteThresholds() {
    251 	t.writePacketsLeft = packetRekeyThreshold
    252 	if t.config.RekeyThreshold > 0 {
    253 		t.writeBytesLeft = int64(t.config.RekeyThreshold)
    254 	} else if t.algorithms != nil {
    255 		t.writeBytesLeft = t.algorithms.w.rekeyBytes()
    256 	} else {
    257 		t.writeBytesLeft = 1 << 30
    258 	}
    259 }
    260 
    261 func (t *handshakeTransport) kexLoop() {
    262 
    263 write:
    264 	for t.getWriteError() == nil {
    265 		var request *pendingKex
    266 		var sent bool
    267 
    268 		for request == nil || !sent {
    269 			var ok bool
    270 			select {
    271 			case request, ok = <-t.startKex:
    272 				if !ok {
    273 					break write
    274 				}
    275 			case <-t.requestKex:
    276 				break
    277 			}
    278 
    279 			if !sent {
    280 				if err := t.sendKexInit(); err != nil {
    281 					t.recordWriteError(err)
    282 					break
    283 				}
    284 				sent = true
    285 			}
    286 		}
    287 
    288 		if err := t.getWriteError(); err != nil {
    289 			if request != nil {
    290 				request.done <- err
    291 			}
    292 			break
    293 		}
    294 
    295 		// We're not servicing t.requestKex, but that is OK:
    296 		// we never block on sending to t.requestKex.
    297 
    298 		// We're not servicing t.startKex, but the remote end
    299 		// has just sent us a kexInitMsg, so it can't send
    300 		// another key change request, until we close the done
    301 		// channel on the pendingKex request.
    302 
    303 		err := t.enterKeyExchange(request.otherInit)
    304 
    305 		t.mu.Lock()
    306 		t.writeError = err
    307 		t.sentInitPacket = nil
    308 		t.sentInitMsg = nil
    309 
    310 		t.resetWriteThresholds()
    311 
    312 		// we have completed the key exchange. Since the
    313 		// reader is still blocked, it is safe to clear out
    314 		// the requestKex channel. This avoids the situation
    315 		// where: 1) we consumed our own request for the
    316 		// initial kex, and 2) the kex from the remote side
    317 		// caused another send on the requestKex channel,
    318 	clear:
    319 		for {
    320 			select {
    321 			case <-t.requestKex:
    322 				//
    323 			default:
    324 				break clear
    325 			}
    326 		}
    327 
    328 		request.done <- t.writeError
    329 
    330 		// kex finished. Push packets that we received while
    331 		// the kex was in progress. Don't look at t.startKex
    332 		// and don't increment writtenSinceKex: if we trigger
    333 		// another kex while we are still busy with the last
    334 		// one, things will become very confusing.
    335 		for _, p := range t.pendingPackets {
    336 			t.writeError = t.pushPacket(p)
    337 			if t.writeError != nil {
    338 				break
    339 			}
    340 		}
    341 		t.pendingPackets = t.pendingPackets[:0]
    342 		t.mu.Unlock()
    343 	}
    344 
    345 	// Unblock reader.
    346 	t.conn.Close()
    347 
    348 	// drain startKex channel. We don't service t.requestKex
    349 	// because nobody does blocking sends there.
    350 	for request := range t.startKex {
    351 		request.done <- t.getWriteError()
    352 	}
    353 
    354 	// Mark that the loop is done so that Close can return.
    355 	close(t.kexLoopDone)
    356 }
    357 
    358 // The protocol uses uint32 for packet counters, so we can't let them
    359 // reach 1<<32.  We will actually read and write more packets than
    360 // this, though: the other side may send more packets, and after we
    361 // hit this limit on writing we will send a few more packets for the
    362 // key exchange itself.
    363 const packetRekeyThreshold = (1 << 31)
    364 
    365 func (t *handshakeTransport) resetReadThresholds() {
    366 	t.readPacketsLeft = packetRekeyThreshold
    367 	if t.config.RekeyThreshold > 0 {
    368 		t.readBytesLeft = int64(t.config.RekeyThreshold)
    369 	} else if t.algorithms != nil {
    370 		t.readBytesLeft = t.algorithms.r.rekeyBytes()
    371 	} else {
    372 		t.readBytesLeft = 1 << 30
    373 	}
    374 }
    375 
    376 func (t *handshakeTransport) readOnePacket(first bool) ([]byte, error) {
    377 	p, err := t.conn.readPacket()
    378 	if err != nil {
    379 		return nil, err
    380 	}
    381 
    382 	if t.readPacketsLeft > 0 {
    383 		t.readPacketsLeft--
    384 	} else {
    385 		t.requestKeyExchange()
    386 	}
    387 
    388 	if t.readBytesLeft > 0 {
    389 		t.readBytesLeft -= int64(len(p))
    390 	} else {
    391 		t.requestKeyExchange()
    392 	}
    393 
    394 	if debugHandshake {
    395 		t.printPacket(p, false)
    396 	}
    397 
    398 	if first && p[0] != msgKexInit {
    399 		return nil, fmt.Errorf("ssh: first packet should be msgKexInit")
    400 	}
    401 
    402 	if p[0] != msgKexInit {
    403 		return p, nil
    404 	}
    405 
    406 	firstKex := t.sessionID == nil
    407 
    408 	kex := pendingKex{
    409 		done:      make(chan error, 1),
    410 		otherInit: p,
    411 	}
    412 	t.startKex <- &kex
    413 	err = <-kex.done
    414 
    415 	if debugHandshake {
    416 		log.Printf("%s exited key exchange (first %v), err %v", t.id(), firstKex, err)
    417 	}
    418 
    419 	if err != nil {
    420 		return nil, err
    421 	}
    422 
    423 	t.resetReadThresholds()
    424 
    425 	// By default, a key exchange is hidden from higher layers by
    426 	// translating it into msgIgnore.
    427 	successPacket := []byte{msgIgnore}
    428 	if firstKex {
    429 		// sendKexInit() for the first kex waits for
    430 		// msgNewKeys so the authentication process is
    431 		// guaranteed to happen over an encrypted transport.
    432 		successPacket = []byte{msgNewKeys}
    433 	}
    434 
    435 	return successPacket, nil
    436 }
    437 
    438 // sendKexInit sends a key change message.
    439 func (t *handshakeTransport) sendKexInit() error {
    440 	t.mu.Lock()
    441 	defer t.mu.Unlock()
    442 	if t.sentInitMsg != nil {
    443 		// kexInits may be sent either in response to the other side,
    444 		// or because our side wants to initiate a key change, so we
    445 		// may have already sent a kexInit. In that case, don't send a
    446 		// second kexInit.
    447 		return nil
    448 	}
    449 
    450 	msg := &kexInitMsg{
    451 		KexAlgos:                t.config.KeyExchanges,
    452 		CiphersClientServer:     t.config.Ciphers,
    453 		CiphersServerClient:     t.config.Ciphers,
    454 		MACsClientServer:        t.config.MACs,
    455 		MACsServerClient:        t.config.MACs,
    456 		CompressionClientServer: supportedCompressions,
    457 		CompressionServerClient: supportedCompressions,
    458 	}
    459 	io.ReadFull(rand.Reader, msg.Cookie[:])
    460 
    461 	isServer := len(t.hostKeys) > 0
    462 	if isServer {
    463 		for _, k := range t.hostKeys {
    464 			// If k is an AlgorithmSigner, presume it supports all signature algorithms
    465 			// associated with the key format. (Ideally AlgorithmSigner would have a
    466 			// method to advertise supported algorithms, but it doesn't. This means that
    467 			// adding support for a new algorithm is a breaking change, as we will
    468 			// immediately negotiate it even if existing implementations don't support
    469 			// it. If that ever happens, we'll have to figure something out.)
    470 			// If k is not an AlgorithmSigner, we can only assume it only supports the
    471 			// algorithms that matches the key format. (This means that Sign can't pick
    472 			// a different default.)
    473 			keyFormat := k.PublicKey().Type()
    474 			if _, ok := k.(AlgorithmSigner); ok {
    475 				msg.ServerHostKeyAlgos = append(msg.ServerHostKeyAlgos, algorithmsForKeyFormat(keyFormat)...)
    476 			} else {
    477 				msg.ServerHostKeyAlgos = append(msg.ServerHostKeyAlgos, keyFormat)
    478 			}
    479 		}
    480 	} else {
    481 		msg.ServerHostKeyAlgos = t.hostKeyAlgorithms
    482 
    483 		// As a client we opt in to receiving SSH_MSG_EXT_INFO so we know what
    484 		// algorithms the server supports for public key authentication. See RFC
    485 		// 8308, Section 2.1.
    486 		if firstKeyExchange := t.sessionID == nil; firstKeyExchange {
    487 			msg.KexAlgos = make([]string, 0, len(t.config.KeyExchanges)+1)
    488 			msg.KexAlgos = append(msg.KexAlgos, t.config.KeyExchanges...)
    489 			msg.KexAlgos = append(msg.KexAlgos, "ext-info-c")
    490 		}
    491 	}
    492 
    493 	packet := Marshal(msg)
    494 
    495 	// writePacket destroys the contents, so save a copy.
    496 	packetCopy := make([]byte, len(packet))
    497 	copy(packetCopy, packet)
    498 
    499 	if err := t.pushPacket(packetCopy); err != nil {
    500 		return err
    501 	}
    502 
    503 	t.sentInitMsg = msg
    504 	t.sentInitPacket = packet
    505 
    506 	return nil
    507 }
    508 
    509 func (t *handshakeTransport) writePacket(p []byte) error {
    510 	switch p[0] {
    511 	case msgKexInit:
    512 		return errors.New("ssh: only handshakeTransport can send kexInit")
    513 	case msgNewKeys:
    514 		return errors.New("ssh: only handshakeTransport can send newKeys")
    515 	}
    516 
    517 	t.mu.Lock()
    518 	defer t.mu.Unlock()
    519 	if t.writeError != nil {
    520 		return t.writeError
    521 	}
    522 
    523 	if t.sentInitMsg != nil {
    524 		// Copy the packet so the writer can reuse the buffer.
    525 		cp := make([]byte, len(p))
    526 		copy(cp, p)
    527 		t.pendingPackets = append(t.pendingPackets, cp)
    528 		return nil
    529 	}
    530 
    531 	if t.writeBytesLeft > 0 {
    532 		t.writeBytesLeft -= int64(len(p))
    533 	} else {
    534 		t.requestKeyExchange()
    535 	}
    536 
    537 	if t.writePacketsLeft > 0 {
    538 		t.writePacketsLeft--
    539 	} else {
    540 		t.requestKeyExchange()
    541 	}
    542 
    543 	if err := t.pushPacket(p); err != nil {
    544 		t.writeError = err
    545 	}
    546 
    547 	return nil
    548 }
    549 
    550 func (t *handshakeTransport) Close() error {
    551 	// Close the connection. This should cause the readLoop goroutine to wake up
    552 	// and close t.startKex, which will shut down kexLoop if running.
    553 	err := t.conn.Close()
    554 
    555 	// Wait for the kexLoop goroutine to complete.
    556 	// At that point we know that the readLoop goroutine is complete too,
    557 	// because kexLoop itself waits for readLoop to close the startKex channel.
    558 	<-t.kexLoopDone
    559 
    560 	return err
    561 }
    562 
    563 func (t *handshakeTransport) enterKeyExchange(otherInitPacket []byte) error {
    564 	if debugHandshake {
    565 		log.Printf("%s entered key exchange", t.id())
    566 	}
    567 
    568 	otherInit := &kexInitMsg{}
    569 	if err := Unmarshal(otherInitPacket, otherInit); err != nil {
    570 		return err
    571 	}
    572 
    573 	magics := handshakeMagics{
    574 		clientVersion: t.clientVersion,
    575 		serverVersion: t.serverVersion,
    576 		clientKexInit: otherInitPacket,
    577 		serverKexInit: t.sentInitPacket,
    578 	}
    579 
    580 	clientInit := otherInit
    581 	serverInit := t.sentInitMsg
    582 	isClient := len(t.hostKeys) == 0
    583 	if isClient {
    584 		clientInit, serverInit = serverInit, clientInit
    585 
    586 		magics.clientKexInit = t.sentInitPacket
    587 		magics.serverKexInit = otherInitPacket
    588 	}
    589 
    590 	var err error
    591 	t.algorithms, err = findAgreedAlgorithms(isClient, clientInit, serverInit)
    592 	if err != nil {
    593 		return err
    594 	}
    595 
    596 	// We don't send FirstKexFollows, but we handle receiving it.
    597 	//
    598 	// RFC 4253 section 7 defines the kex and the agreement method for
    599 	// first_kex_packet_follows. It states that the guessed packet
    600 	// should be ignored if the "kex algorithm and/or the host
    601 	// key algorithm is guessed wrong (server and client have
    602 	// different preferred algorithm), or if any of the other
    603 	// algorithms cannot be agreed upon". The other algorithms have
    604 	// already been checked above so the kex algorithm and host key
    605 	// algorithm are checked here.
    606 	if otherInit.FirstKexFollows && (clientInit.KexAlgos[0] != serverInit.KexAlgos[0] || clientInit.ServerHostKeyAlgos[0] != serverInit.ServerHostKeyAlgos[0]) {
    607 		// other side sent a kex message for the wrong algorithm,
    608 		// which we have to ignore.
    609 		if _, err := t.conn.readPacket(); err != nil {
    610 			return err
    611 		}
    612 	}
    613 
    614 	kex, ok := kexAlgoMap[t.algorithms.kex]
    615 	if !ok {
    616 		return fmt.Errorf("ssh: unexpected key exchange algorithm %v", t.algorithms.kex)
    617 	}
    618 
    619 	var result *kexResult
    620 	if len(t.hostKeys) > 0 {
    621 		result, err = t.server(kex, &magics)
    622 	} else {
    623 		result, err = t.client(kex, &magics)
    624 	}
    625 
    626 	if err != nil {
    627 		return err
    628 	}
    629 
    630 	firstKeyExchange := t.sessionID == nil
    631 	if firstKeyExchange {
    632 		t.sessionID = result.H
    633 	}
    634 	result.SessionID = t.sessionID
    635 
    636 	if err := t.conn.prepareKeyChange(t.algorithms, result); err != nil {
    637 		return err
    638 	}
    639 	if err = t.conn.writePacket([]byte{msgNewKeys}); err != nil {
    640 		return err
    641 	}
    642 
    643 	// On the server side, after the first SSH_MSG_NEWKEYS, send a SSH_MSG_EXT_INFO
    644 	// message with the server-sig-algs extension if the client supports it. See
    645 	// RFC 8308, Sections 2.4 and 3.1.
    646 	if !isClient && firstKeyExchange && contains(clientInit.KexAlgos, "ext-info-c") {
    647 		extInfo := &extInfoMsg{
    648 			NumExtensions: 1,
    649 			Payload:       make([]byte, 0, 4+15+4+len(supportedPubKeyAuthAlgosList)),
    650 		}
    651 		extInfo.Payload = appendInt(extInfo.Payload, len("server-sig-algs"))
    652 		extInfo.Payload = append(extInfo.Payload, "server-sig-algs"...)
    653 		extInfo.Payload = appendInt(extInfo.Payload, len(supportedPubKeyAuthAlgosList))
    654 		extInfo.Payload = append(extInfo.Payload, supportedPubKeyAuthAlgosList...)
    655 		if err := t.conn.writePacket(Marshal(extInfo)); err != nil {
    656 			return err
    657 		}
    658 	}
    659 
    660 	if packet, err := t.conn.readPacket(); err != nil {
    661 		return err
    662 	} else if packet[0] != msgNewKeys {
    663 		return unexpectedMessageError(msgNewKeys, packet[0])
    664 	}
    665 
    666 	return nil
    667 }
    668 
    669 // algorithmSignerWrapper is an AlgorithmSigner that only supports the default
    670 // key format algorithm.
    671 //
    672 // This is technically a violation of the AlgorithmSigner interface, but it
    673 // should be unreachable given where we use this. Anyway, at least it returns an
    674 // error instead of panicing or producing an incorrect signature.
    675 type algorithmSignerWrapper struct {
    676 	Signer
    677 }
    678 
    679 func (a algorithmSignerWrapper) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
    680 	if algorithm != underlyingAlgo(a.PublicKey().Type()) {
    681 		return nil, errors.New("ssh: internal error: algorithmSignerWrapper invoked with non-default algorithm")
    682 	}
    683 	return a.Sign(rand, data)
    684 }
    685 
    686 func pickHostKey(hostKeys []Signer, algo string) AlgorithmSigner {
    687 	for _, k := range hostKeys {
    688 		if algo == k.PublicKey().Type() {
    689 			return algorithmSignerWrapper{k}
    690 		}
    691 		k, ok := k.(AlgorithmSigner)
    692 		if !ok {
    693 			continue
    694 		}
    695 		for _, a := range algorithmsForKeyFormat(k.PublicKey().Type()) {
    696 			if algo == a {
    697 				return k
    698 			}
    699 		}
    700 	}
    701 	return nil
    702 }
    703 
    704 func (t *handshakeTransport) server(kex kexAlgorithm, magics *handshakeMagics) (*kexResult, error) {
    705 	hostKey := pickHostKey(t.hostKeys, t.algorithms.hostKey)
    706 	if hostKey == nil {
    707 		return nil, errors.New("ssh: internal error: negotiated unsupported signature type")
    708 	}
    709 
    710 	r, err := kex.Server(t.conn, t.config.Rand, magics, hostKey, t.algorithms.hostKey)
    711 	return r, err
    712 }
    713 
    714 func (t *handshakeTransport) client(kex kexAlgorithm, magics *handshakeMagics) (*kexResult, error) {
    715 	result, err := kex.Client(t.conn, t.config.Rand, magics)
    716 	if err != nil {
    717 		return nil, err
    718 	}
    719 
    720 	hostKey, err := ParsePublicKey(result.HostKey)
    721 	if err != nil {
    722 		return nil, err
    723 	}
    724 
    725 	if err := verifyHostKeySignature(hostKey, t.algorithms.hostKey, result); err != nil {
    726 		return nil, err
    727 	}
    728 
    729 	err = t.hostKeyCallback(t.dialAddress, t.remoteAddr, hostKey)
    730 	if err != nil {
    731 		return nil, err
    732 	}
    733 
    734 	return result, nil
    735 }