gtsocial-umbx

Unnamed repository; edit this file 'description' to name the repository.
Log | Files | Refs | README | LICENSE

sha3.go (5827B)


      1 // Copyright 2014 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package sha3
      6 
      7 // spongeDirection indicates the direction bytes are flowing through the sponge.
      8 type spongeDirection int
      9 
     10 const (
     11 	// spongeAbsorbing indicates that the sponge is absorbing input.
     12 	spongeAbsorbing spongeDirection = iota
     13 	// spongeSqueezing indicates that the sponge is being squeezed.
     14 	spongeSqueezing
     15 )
     16 
     17 const (
     18 	// maxRate is the maximum size of the internal buffer. SHAKE-256
     19 	// currently needs the largest buffer.
     20 	maxRate = 168
     21 )
     22 
     23 type state struct {
     24 	// Generic sponge components.
     25 	a    [25]uint64 // main state of the hash
     26 	buf  []byte     // points into storage
     27 	rate int        // the number of bytes of state to use
     28 
     29 	// dsbyte contains the "domain separation" bits and the first bit of
     30 	// the padding. Sections 6.1 and 6.2 of [1] separate the outputs of the
     31 	// SHA-3 and SHAKE functions by appending bitstrings to the message.
     32 	// Using a little-endian bit-ordering convention, these are "01" for SHA-3
     33 	// and "1111" for SHAKE, or 00000010b and 00001111b, respectively. Then the
     34 	// padding rule from section 5.1 is applied to pad the message to a multiple
     35 	// of the rate, which involves adding a "1" bit, zero or more "0" bits, and
     36 	// a final "1" bit. We merge the first "1" bit from the padding into dsbyte,
     37 	// giving 00000110b (0x06) and 00011111b (0x1f).
     38 	// [1] http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
     39 	//     "Draft FIPS 202: SHA-3 Standard: Permutation-Based Hash and
     40 	//      Extendable-Output Functions (May 2014)"
     41 	dsbyte byte
     42 
     43 	storage storageBuf
     44 
     45 	// Specific to SHA-3 and SHAKE.
     46 	outputLen int             // the default output size in bytes
     47 	state     spongeDirection // whether the sponge is absorbing or squeezing
     48 }
     49 
     50 // BlockSize returns the rate of sponge underlying this hash function.
     51 func (d *state) BlockSize() int { return d.rate }
     52 
     53 // Size returns the output size of the hash function in bytes.
     54 func (d *state) Size() int { return d.outputLen }
     55 
     56 // Reset clears the internal state by zeroing the sponge state and
     57 // the byte buffer, and setting Sponge.state to absorbing.
     58 func (d *state) Reset() {
     59 	// Zero the permutation's state.
     60 	for i := range d.a {
     61 		d.a[i] = 0
     62 	}
     63 	d.state = spongeAbsorbing
     64 	d.buf = d.storage.asBytes()[:0]
     65 }
     66 
     67 func (d *state) clone() *state {
     68 	ret := *d
     69 	if ret.state == spongeAbsorbing {
     70 		ret.buf = ret.storage.asBytes()[:len(ret.buf)]
     71 	} else {
     72 		ret.buf = ret.storage.asBytes()[d.rate-cap(d.buf) : d.rate]
     73 	}
     74 
     75 	return &ret
     76 }
     77 
     78 // permute applies the KeccakF-1600 permutation. It handles
     79 // any input-output buffering.
     80 func (d *state) permute() {
     81 	switch d.state {
     82 	case spongeAbsorbing:
     83 		// If we're absorbing, we need to xor the input into the state
     84 		// before applying the permutation.
     85 		xorIn(d, d.buf)
     86 		d.buf = d.storage.asBytes()[:0]
     87 		keccakF1600(&d.a)
     88 	case spongeSqueezing:
     89 		// If we're squeezing, we need to apply the permutation before
     90 		// copying more output.
     91 		keccakF1600(&d.a)
     92 		d.buf = d.storage.asBytes()[:d.rate]
     93 		copyOut(d, d.buf)
     94 	}
     95 }
     96 
     97 // pads appends the domain separation bits in dsbyte, applies
     98 // the multi-bitrate 10..1 padding rule, and permutes the state.
     99 func (d *state) padAndPermute(dsbyte byte) {
    100 	if d.buf == nil {
    101 		d.buf = d.storage.asBytes()[:0]
    102 	}
    103 	// Pad with this instance's domain-separator bits. We know that there's
    104 	// at least one byte of space in d.buf because, if it were full,
    105 	// permute would have been called to empty it. dsbyte also contains the
    106 	// first one bit for the padding. See the comment in the state struct.
    107 	d.buf = append(d.buf, dsbyte)
    108 	zerosStart := len(d.buf)
    109 	d.buf = d.storage.asBytes()[:d.rate]
    110 	for i := zerosStart; i < d.rate; i++ {
    111 		d.buf[i] = 0
    112 	}
    113 	// This adds the final one bit for the padding. Because of the way that
    114 	// bits are numbered from the LSB upwards, the final bit is the MSB of
    115 	// the last byte.
    116 	d.buf[d.rate-1] ^= 0x80
    117 	// Apply the permutation
    118 	d.permute()
    119 	d.state = spongeSqueezing
    120 	d.buf = d.storage.asBytes()[:d.rate]
    121 	copyOut(d, d.buf)
    122 }
    123 
    124 // Write absorbs more data into the hash's state. It produces an error
    125 // if more data is written to the ShakeHash after writing
    126 func (d *state) Write(p []byte) (written int, err error) {
    127 	if d.state != spongeAbsorbing {
    128 		panic("sha3: write to sponge after read")
    129 	}
    130 	if d.buf == nil {
    131 		d.buf = d.storage.asBytes()[:0]
    132 	}
    133 	written = len(p)
    134 
    135 	for len(p) > 0 {
    136 		if len(d.buf) == 0 && len(p) >= d.rate {
    137 			// The fast path; absorb a full "rate" bytes of input and apply the permutation.
    138 			xorIn(d, p[:d.rate])
    139 			p = p[d.rate:]
    140 			keccakF1600(&d.a)
    141 		} else {
    142 			// The slow path; buffer the input until we can fill the sponge, and then xor it in.
    143 			todo := d.rate - len(d.buf)
    144 			if todo > len(p) {
    145 				todo = len(p)
    146 			}
    147 			d.buf = append(d.buf, p[:todo]...)
    148 			p = p[todo:]
    149 
    150 			// If the sponge is full, apply the permutation.
    151 			if len(d.buf) == d.rate {
    152 				d.permute()
    153 			}
    154 		}
    155 	}
    156 
    157 	return
    158 }
    159 
    160 // Read squeezes an arbitrary number of bytes from the sponge.
    161 func (d *state) Read(out []byte) (n int, err error) {
    162 	// If we're still absorbing, pad and apply the permutation.
    163 	if d.state == spongeAbsorbing {
    164 		d.padAndPermute(d.dsbyte)
    165 	}
    166 
    167 	n = len(out)
    168 
    169 	// Now, do the squeezing.
    170 	for len(out) > 0 {
    171 		n := copy(out, d.buf)
    172 		d.buf = d.buf[n:]
    173 		out = out[n:]
    174 
    175 		// Apply the permutation if we've squeezed the sponge dry.
    176 		if len(d.buf) == 0 {
    177 			d.permute()
    178 		}
    179 	}
    180 
    181 	return
    182 }
    183 
    184 // Sum applies padding to the hash state and then squeezes out the desired
    185 // number of output bytes.
    186 func (d *state) Sum(in []byte) []byte {
    187 	// Make a copy of the original hash so that caller can keep writing
    188 	// and summing.
    189 	dup := d.clone()
    190 	hash := make([]byte, dup.outputLen)
    191 	dup.Read(hash)
    192 	return append(in, hash...)
    193 }