gtsocial-umbx

Unnamed repository; edit this file 'description' to name the repository.
Log | Files | Refs | README | LICENSE

pbkdf2.go (2483B)


      1 // Copyright 2012 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 /*
      6 Package pbkdf2 implements the key derivation function PBKDF2 as defined in RFC
      7 2898 / PKCS #5 v2.0.
      8 
      9 A key derivation function is useful when encrypting data based on a password
     10 or any other not-fully-random data. It uses a pseudorandom function to derive
     11 a secure encryption key based on the password.
     12 
     13 While v2.0 of the standard defines only one pseudorandom function to use,
     14 HMAC-SHA1, the drafted v2.1 specification allows use of all five FIPS Approved
     15 Hash Functions SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 for HMAC. To
     16 choose, you can pass the `New` functions from the different SHA packages to
     17 pbkdf2.Key.
     18 */
     19 package pbkdf2 // import "golang.org/x/crypto/pbkdf2"
     20 
     21 import (
     22 	"crypto/hmac"
     23 	"hash"
     24 )
     25 
     26 // Key derives a key from the password, salt and iteration count, returning a
     27 // []byte of length keylen that can be used as cryptographic key. The key is
     28 // derived based on the method described as PBKDF2 with the HMAC variant using
     29 // the supplied hash function.
     30 //
     31 // For example, to use a HMAC-SHA-1 based PBKDF2 key derivation function, you
     32 // can get a derived key for e.g. AES-256 (which needs a 32-byte key) by
     33 // doing:
     34 //
     35 //	dk := pbkdf2.Key([]byte("some password"), salt, 4096, 32, sha1.New)
     36 //
     37 // Remember to get a good random salt. At least 8 bytes is recommended by the
     38 // RFC.
     39 //
     40 // Using a higher iteration count will increase the cost of an exhaustive
     41 // search but will also make derivation proportionally slower.
     42 func Key(password, salt []byte, iter, keyLen int, h func() hash.Hash) []byte {
     43 	prf := hmac.New(h, password)
     44 	hashLen := prf.Size()
     45 	numBlocks := (keyLen + hashLen - 1) / hashLen
     46 
     47 	var buf [4]byte
     48 	dk := make([]byte, 0, numBlocks*hashLen)
     49 	U := make([]byte, hashLen)
     50 	for block := 1; block <= numBlocks; block++ {
     51 		// N.B.: || means concatenation, ^ means XOR
     52 		// for each block T_i = U_1 ^ U_2 ^ ... ^ U_iter
     53 		// U_1 = PRF(password, salt || uint(i))
     54 		prf.Reset()
     55 		prf.Write(salt)
     56 		buf[0] = byte(block >> 24)
     57 		buf[1] = byte(block >> 16)
     58 		buf[2] = byte(block >> 8)
     59 		buf[3] = byte(block)
     60 		prf.Write(buf[:4])
     61 		dk = prf.Sum(dk)
     62 		T := dk[len(dk)-hashLen:]
     63 		copy(U, T)
     64 
     65 		// U_n = PRF(password, U_(n-1))
     66 		for n := 2; n <= iter; n++ {
     67 			prf.Reset()
     68 			prf.Write(U)
     69 			U = U[:0]
     70 			U = prf.Sum(U)
     71 			for x := range U {
     72 				T[x] ^= U[x]
     73 			}
     74 		}
     75 	}
     76 	return dk[:keyLen]
     77 }