gtsocial-umbx

Unnamed repository; edit this file 'description' to name the repository.
Log | Files | Refs | README | LICENSE

gen.go (87572B)


      1 // Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved.
      2 // Use of this source code is governed by a MIT license found in the LICENSE file.
      3 
      4 //go:build codecgen.exec
      5 // +build codecgen.exec
      6 
      7 package codec
      8 
      9 import (
     10 	"bytes"
     11 	"encoding/base64"
     12 	"errors"
     13 	"fmt"
     14 	"go/format"
     15 	"io"
     16 	"io/ioutil"
     17 	"math/rand"
     18 	"os"
     19 	"reflect"
     20 	"regexp"
     21 	"sort"
     22 	"strconv"
     23 	"strings"
     24 	"sync"
     25 	"text/template"
     26 	"time"
     27 	// "ugorji.net/zz"
     28 	"unicode"
     29 	"unicode/utf8"
     30 )
     31 
     32 // ---------------------------------------------------
     33 // codecgen supports the full cycle of reflection-based codec:
     34 //    - RawExt
     35 //    - Raw
     36 //    - Extensions
     37 //    - (Binary|Text|JSON)(Unm|M)arshal
     38 //    - generic by-kind
     39 //
     40 // This means that, for dynamic things, we MUST use reflection to at least get the reflect.Type.
     41 // In those areas, we try to only do reflection or interface-conversion when NECESSARY:
     42 //    - Extensions, only if Extensions are configured.
     43 //
     44 // However, note following codecgen caveats:
     45 //   - Canonical option.
     46 //     If Canonical=true, codecgen'ed code may delegate encoding maps to reflection-based code.
     47 //     This is due to the runtime work needed to marshal a map in canonical mode.
     48 //     However, if map key is a pre-defined/builtin numeric or string type, codecgen
     49 //     will try to write it out itself
     50 //   - CheckCircularRef option.
     51 //     When encoding a struct, a circular reference can lead to a stack overflow.
     52 //     If CheckCircularRef=true, codecgen'ed code will delegate encoding structs to reflection-based code.
     53 //   - MissingFielder implementation.
     54 //     If a type implements MissingFielder, a Selfer is not generated (with a warning message).
     55 //     Statically reproducing the runtime work needed to extract the missing fields and marshal them
     56 //     along with the struct fields, while handling the Canonical=true special case, was onerous to implement.
     57 //
     58 // During encode/decode, Selfer takes precedence.
     59 // A type implementing Selfer will know how to encode/decode itself statically.
     60 //
     61 // The following field types are supported:
     62 //     array: [n]T
     63 //     slice: []T
     64 //     map: map[K]V
     65 //     primitive: [u]int[n], float(32|64), bool, string
     66 //     struct
     67 //
     68 // ---------------------------------------------------
     69 // Note that a Selfer cannot call (e|d).(En|De)code on itself,
     70 // as this will cause a circular reference, as (En|De)code will call Selfer methods.
     71 // Any type that implements Selfer must implement completely and not fallback to (En|De)code.
     72 //
     73 // In addition, code in this file manages the generation of fast-path implementations of
     74 // encode/decode of slices/maps of primitive keys/values.
     75 //
     76 // Users MUST re-generate their implementations whenever the code shape changes.
     77 // The generated code will panic if it was generated with a version older than the supporting library.
     78 // ---------------------------------------------------
     79 //
     80 // codec framework is very feature rich.
     81 // When encoding or decoding into an interface, it depends on the runtime type of the interface.
     82 // The type of the interface may be a named type, an extension, etc.
     83 // Consequently, we fallback to runtime codec for encoding/decoding interfaces.
     84 // In addition, we fallback for any value which cannot be guaranteed at runtime.
     85 // This allows us support ANY value, including any named types, specifically those which
     86 // do not implement our interfaces (e.g. Selfer).
     87 //
     88 // This explains some slowness compared to other code generation codecs (e.g. msgp).
     89 // This reduction in speed is only seen when your refers to interfaces,
     90 // e.g. type T struct { A interface{}; B []interface{}; C map[string]interface{} }
     91 //
     92 // codecgen will panic if the file was generated with an old version of the library in use.
     93 //
     94 // Note:
     95 //   It was a conscious decision to have gen.go always explicitly call EncodeNil or TryDecodeAsNil.
     96 //   This way, there isn't a function call overhead just to see that we should not enter a block of code.
     97 //
     98 // Note:
     99 //   codecgen-generated code depends on the variables defined by fast-path.generated.go.
    100 //   consequently, you cannot run with tags "codecgen codec.notfastpath".
    101 //
    102 // Note:
    103 //   genInternalXXX functions are used for generating fast-path and other internally generated
    104 //   files, and not for use in codecgen.
    105 
    106 // Size of a struct or value is not portable across machines, especially across 32-bit vs 64-bit
    107 // operating systems. This is due to types like int, uintptr, pointers, (and derived types like slice), etc
    108 // which use the natural word size on those machines, which may be 4 bytes (on 32-bit) or 8 bytes (on 64-bit).
    109 //
    110 // Within decInferLen calls, we may generate an explicit size of the entry.
    111 // We do this because decInferLen values are expected to be approximate,
    112 // and serve as a good hint on the size of the elements or key+value entry.
    113 //
    114 // Since development is done on 64-bit machines, the sizes will be roughly correctly
    115 // on 64-bit OS, and slightly larger than expected on 32-bit OS.
    116 // This is ok.
    117 //
    118 // For reference, look for 'Size' in fast-path.go.tmpl, gen-dec-(array|map).go.tmpl and gen.go (this file).
    119 
    120 // GenVersion is the current version of codecgen.
    121 //
    122 // MARKER: Increment this value each time codecgen changes fundamentally.
    123 // Also update codecgen/gen.go (minimumCodecVersion, genVersion, etc).
    124 // Fundamental changes are:
    125 //   - helper methods change (signature change, new ones added, some removed, etc)
    126 //   - codecgen command line changes
    127 //
    128 // v1: Initial Version
    129 // v2: -
    130 // v3: For Kubernetes: changes in signature of some unpublished helper methods and codecgen cmdline arguments.
    131 // v4: Removed separator support from (en|de)cDriver, and refactored codec(gen)
    132 // v5: changes to support faster json decoding. Let encoder/decoder maintain state of collections.
    133 // v6: removed unsafe from gen, and now uses codecgen.exec tag
    134 // v7: -
    135 // v8: current - we now maintain compatibility with old generated code.
    136 // v9: - skipped
    137 // v10: modified encDriver and decDriver interfaces.
    138 // v11: remove deprecated methods of encDriver and decDriver.
    139 // v12: removed deprecated methods from genHelper and changed container tracking logic
    140 // v13: 20190603 removed DecodeString - use DecodeStringAsBytes instead
    141 // v14: 20190611 refactored nil handling: TryDecodeAsNil -> selective TryNil, etc
    142 // v15: 20190626 encDriver.EncodeString handles StringToRaw flag inside handle
    143 // v16: 20190629 refactoring for v1.1.6
    144 // v17: 20200911 reduce number of types for which we generate fast path functions (v1.1.8)
    145 // v18: 20201004 changed definition of genHelper...Extension (to take interface{}) and eliminated I2Rtid method
    146 // v19: 20201115 updated codecgen cmdline flags and optimized output
    147 // v20: 20201120 refactored GenHelper to one exported function
    148 // v21: 20210104 refactored generated code to honor ZeroCopy=true for more efficiency
    149 // v22: 20210118 fixed issue in generated code when encoding a type which is also a codec.Selfer
    150 // v23: 20210203 changed slice/map types for which we generate fast-path functions
    151 // v24: 20210226 robust handling for Canonical|CheckCircularRef flags and MissingFielder implementations
    152 // v25: 20210406 pass base reflect.Type to side(En|De)code and (En|De)codeExt calls
    153 // v26: 20230201 genHelper changes for more inlining and consequent performance
    154 // v27: 20230219 fix error decoding struct from array - due to misplaced counter increment
    155 // v28: 20230224  fix decoding missing fields of struct from array, due to double counter increment
    156 const genVersion = 28
    157 
    158 const (
    159 	genCodecPkg        = "codec1978" // MARKER: keep in sync with codecgen/gen.go
    160 	genTempVarPfx      = "yy"
    161 	genTopLevelVarName = "x"
    162 
    163 	// ignore canBeNil parameter, and always set to true.
    164 	// This is because nil can appear anywhere, so we should always check.
    165 	genAnythingCanBeNil = true
    166 
    167 	// genStructCanonical configures whether we generate 2 paths based on Canonical flag
    168 	// when encoding struct fields.
    169 	genStructCanonical = true
    170 
    171 	// genFastpathCanonical configures whether we support Canonical in fast path.
    172 	// The savings is not much.
    173 	//
    174 	// MARKER: This MUST ALWAYS BE TRUE. fast-path.go.tmp doesn't handle it being false.
    175 	genFastpathCanonical = true
    176 
    177 	// genFastpathTrimTypes configures whether we trim uncommon fastpath types.
    178 	genFastpathTrimTypes = true
    179 )
    180 
    181 type genStringDecAsBytes string
    182 type genStringDecZC string
    183 
    184 var genStringDecAsBytesTyp = reflect.TypeOf(genStringDecAsBytes(""))
    185 var genStringDecZCTyp = reflect.TypeOf(genStringDecZC(""))
    186 var genFormats = []string{"Json", "Cbor", "Msgpack", "Binc", "Simple"}
    187 
    188 var (
    189 	errGenAllTypesSamePkg        = errors.New("All types must be in the same package")
    190 	errGenExpectArrayOrMap       = errors.New("unexpected type - expecting array/map/slice")
    191 	errGenUnexpectedTypeFastpath = errors.New("fast-path: unexpected type - requires map or slice")
    192 
    193 	genBase64enc  = base64.NewEncoding("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789__")
    194 	genQNameRegex = regexp.MustCompile(`[A-Za-z_.]+`)
    195 )
    196 
    197 type genBuf struct {
    198 	buf []byte
    199 }
    200 
    201 func (x *genBuf) sIf(b bool, s, t string) *genBuf {
    202 	if b {
    203 		x.buf = append(x.buf, s...)
    204 	} else {
    205 		x.buf = append(x.buf, t...)
    206 	}
    207 	return x
    208 }
    209 func (x *genBuf) s(s string) *genBuf              { x.buf = append(x.buf, s...); return x }
    210 func (x *genBuf) b(s []byte) *genBuf              { x.buf = append(x.buf, s...); return x }
    211 func (x *genBuf) v() string                       { return string(x.buf) }
    212 func (x *genBuf) f(s string, args ...interface{}) { x.s(fmt.Sprintf(s, args...)) }
    213 func (x *genBuf) reset() {
    214 	if x.buf != nil {
    215 		x.buf = x.buf[:0]
    216 	}
    217 }
    218 
    219 // genRunner holds some state used during a Gen run.
    220 type genRunner struct {
    221 	w io.Writer // output
    222 	c uint64    // counter used for generating varsfx
    223 	f uint64    // counter used for saying false
    224 
    225 	t  []reflect.Type   // list of types to run selfer on
    226 	tc reflect.Type     // currently running selfer on this type
    227 	te map[uintptr]bool // types for which the encoder has been created
    228 	td map[uintptr]bool // types for which the decoder has been created
    229 	tz map[uintptr]bool // types for which GenIsZero has been created
    230 
    231 	cp string // codec import path
    232 
    233 	im  map[string]reflect.Type // imports to add
    234 	imn map[string]string       // package names of imports to add
    235 	imc uint64                  // counter for import numbers
    236 
    237 	is map[reflect.Type]struct{} // types seen during import search
    238 	bp string                    // base PkgPath, for which we are generating for
    239 
    240 	cpfx string // codec package prefix
    241 
    242 	ty map[reflect.Type]struct{} // types for which GenIsZero *should* be created
    243 	tm map[reflect.Type]struct{} // types for which enc/dec must be generated
    244 	ts []reflect.Type            // types for which enc/dec must be generated
    245 
    246 	xs string // top level variable/constant suffix
    247 	hn string // fn helper type name
    248 
    249 	ti *TypeInfos
    250 	// rr *rand.Rand // random generator for file-specific types
    251 
    252 	jsonOnlyWhen, toArrayWhen, omitEmptyWhen *bool
    253 
    254 	nx bool // no extensions
    255 }
    256 
    257 type genIfClause struct {
    258 	hasIf bool
    259 }
    260 
    261 func (g *genIfClause) end(x *genRunner) {
    262 	if g.hasIf {
    263 		x.line("}")
    264 	}
    265 }
    266 
    267 func (g *genIfClause) c(last bool) (v string) {
    268 	if last {
    269 		if g.hasIf {
    270 			v = " } else { "
    271 		}
    272 	} else if g.hasIf {
    273 		v = " } else if "
    274 	} else {
    275 		v = "if "
    276 		g.hasIf = true
    277 	}
    278 	return
    279 }
    280 
    281 // Gen will write a complete go file containing Selfer implementations for each
    282 // type passed. All the types must be in the same package.
    283 //
    284 // Library users: DO NOT USE IT DIRECTLY. IT WILL CHANGE CONTINUOUSLY WITHOUT NOTICE.
    285 func Gen(w io.Writer, buildTags, pkgName, uid string, noExtensions bool,
    286 	jsonOnlyWhen, toArrayWhen, omitEmptyWhen *bool,
    287 	ti *TypeInfos, types ...reflect.Type) (warnings []string) {
    288 	// All types passed to this method do not have a codec.Selfer method implemented directly.
    289 	// codecgen already checks the AST and skips any types that define the codec.Selfer methods.
    290 	// Consequently, there's no need to check and trim them if they implement codec.Selfer
    291 
    292 	if len(types) == 0 {
    293 		return
    294 	}
    295 	x := genRunner{
    296 		w:             w,
    297 		t:             types,
    298 		te:            make(map[uintptr]bool),
    299 		td:            make(map[uintptr]bool),
    300 		tz:            make(map[uintptr]bool),
    301 		im:            make(map[string]reflect.Type),
    302 		imn:           make(map[string]string),
    303 		is:            make(map[reflect.Type]struct{}),
    304 		tm:            make(map[reflect.Type]struct{}),
    305 		ty:            make(map[reflect.Type]struct{}),
    306 		ts:            []reflect.Type{},
    307 		bp:            genImportPath(types[0]),
    308 		xs:            uid,
    309 		ti:            ti,
    310 		jsonOnlyWhen:  jsonOnlyWhen,
    311 		toArrayWhen:   toArrayWhen,
    312 		omitEmptyWhen: omitEmptyWhen,
    313 
    314 		nx: noExtensions,
    315 	}
    316 	if x.ti == nil {
    317 		x.ti = defTypeInfos
    318 	}
    319 	if x.xs == "" {
    320 		rr := rand.New(rand.NewSource(time.Now().UnixNano()))
    321 		x.xs = strconv.FormatInt(rr.Int63n(9999), 10)
    322 	}
    323 
    324 	// gather imports first:
    325 	x.cp = genImportPath(reflect.TypeOf(x))
    326 	x.imn[x.cp] = genCodecPkg
    327 
    328 	// iterate, check if all in same package, and remove any missingfielders
    329 	for i := 0; i < len(x.t); {
    330 		t := x.t[i]
    331 		// xdebugf("###########: PkgPath: '%v', Name: '%s'\n", genImportPath(t), t.Name())
    332 		if genImportPath(t) != x.bp {
    333 			halt.onerror(errGenAllTypesSamePkg)
    334 		}
    335 		ti1 := x.ti.get(rt2id(t), t)
    336 		if ti1.flagMissingFielder || ti1.flagMissingFielderPtr {
    337 			// output diagnostic message  - that nothing generated for this type
    338 			warnings = append(warnings, fmt.Sprintf("type: '%v' not generated; implements codec.MissingFielder", t))
    339 			copy(x.t[i:], x.t[i+1:])
    340 			x.t = x.t[:len(x.t)-1]
    341 			continue
    342 		}
    343 		x.genRefPkgs(t)
    344 		i++
    345 	}
    346 
    347 	x.line("// +build go1.6")
    348 	if buildTags != "" {
    349 		x.line("// +build " + buildTags)
    350 	}
    351 	x.line(`
    352 
    353 // Code generated by codecgen - DO NOT EDIT.
    354 
    355 `)
    356 	x.line("package " + pkgName)
    357 	x.line("")
    358 	x.line("import (")
    359 	if x.cp != x.bp {
    360 		x.cpfx = genCodecPkg + "."
    361 		x.linef("%s \"%s\"", genCodecPkg, x.cp)
    362 	}
    363 	// use a sorted set of im keys, so that we can get consistent output
    364 	imKeys := make([]string, 0, len(x.im))
    365 	for k := range x.im {
    366 		imKeys = append(imKeys, k)
    367 	}
    368 	sort.Strings(imKeys)
    369 	for _, k := range imKeys { // for k, _ := range x.im {
    370 		if k == x.imn[k] {
    371 			x.linef("\"%s\"", k)
    372 		} else {
    373 			x.linef("%s \"%s\"", x.imn[k], k)
    374 		}
    375 	}
    376 	// add required packages
    377 	for _, k := range [...]string{"runtime", "errors", "strconv", "sort"} { // "reflect", "fmt"
    378 		if _, ok := x.im[k]; !ok {
    379 			x.line("\"" + k + "\"")
    380 		}
    381 	}
    382 	x.line(")")
    383 	x.line("")
    384 
    385 	x.line("const (")
    386 	x.linef("// ----- content types ----")
    387 	x.linef("codecSelferCcUTF8%s = %v", x.xs, int64(cUTF8))
    388 	x.linef("codecSelferCcRAW%s = %v", x.xs, int64(cRAW))
    389 	x.linef("// ----- value types used ----")
    390 	for _, vt := range [...]valueType{
    391 		valueTypeArray, valueTypeMap, valueTypeString,
    392 		valueTypeInt, valueTypeUint, valueTypeFloat,
    393 		valueTypeNil,
    394 	} {
    395 		x.linef("codecSelferValueType%s%s = %v", vt.String(), x.xs, int64(vt))
    396 	}
    397 
    398 	x.linef("codecSelferBitsize%s = uint8(32 << (^uint(0) >> 63))", x.xs)
    399 	x.linef("codecSelferDecContainerLenNil%s = %d", x.xs, int64(containerLenNil))
    400 	x.line(")")
    401 	x.line("var (")
    402 	x.line("errCodecSelferOnlyMapOrArrayEncodeToStruct" + x.xs + " = " + "errors.New(`only encoded map or array can be decoded into a struct`)")
    403 	x.line("_ sort.Interface = nil")
    404 	x.line(")")
    405 	x.line("")
    406 
    407 	x.hn = "codecSelfer" + x.xs
    408 	x.line("type " + x.hn + " struct{}")
    409 	x.line("")
    410 	x.linef("func %sFalse() bool { return false }", x.hn)
    411 	x.linef("func %sTrue() bool { return true }", x.hn)
    412 	x.line("")
    413 
    414 	// add types for sorting canonical
    415 	for _, s := range []string{"string", "uint64", "int64", "float64"} {
    416 		x.linef("type %s%sSlice []%s", x.hn, s, s)
    417 		x.linef("func (p %s%sSlice) Len() int      { return len(p) }", x.hn, s)
    418 		x.linef("func (p %s%sSlice) Swap(i, j int) { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }", x.hn, s)
    419 		x.linef("func (p %s%sSlice) Less(i, j int) bool { return p[uint(i)] < p[uint(j)] }", x.hn, s)
    420 	}
    421 
    422 	x.line("")
    423 	x.varsfxreset()
    424 	x.line("func init() {")
    425 	x.linef("if %sGenVersion != %v {", x.cpfx, genVersion)
    426 	x.line("_, file, _, _ := runtime.Caller(0)")
    427 	x.linef("ver := strconv.FormatInt(int64(%sGenVersion), 10)", x.cpfx)
    428 	x.outf(`panic(errors.New("codecgen version mismatch: current: %v, need " + ver + ". Re-generate file: " + file))`, genVersion)
    429 	x.linef("}")
    430 	if len(imKeys) > 0 {
    431 		x.line("if false { // reference the types, but skip this branch at build/run time")
    432 		for _, k := range imKeys {
    433 			t := x.im[k]
    434 			x.linef("var _ %s.%s", x.imn[k], t.Name())
    435 		}
    436 		x.line("} ") // close if false
    437 	}
    438 	x.line("}") // close init
    439 	x.line("")
    440 
    441 	// generate rest of type info
    442 	for _, t := range x.t {
    443 		x.tc = t
    444 		x.linef("func (%s) codecSelferViaCodecgen() {}", x.genTypeName(t))
    445 		x.selfer(true)
    446 		x.selfer(false)
    447 		x.tryGenIsZero(t)
    448 	}
    449 
    450 	for _, t := range x.ts {
    451 		rtid := rt2id(t)
    452 		// generate enc functions for all these slice/map types.
    453 		x.varsfxreset()
    454 		x.linef("func (x %s) enc%s(v %s%s, e *%sEncoder) {", x.hn, x.genMethodNameT(t), x.arr2str(t, "*"), x.genTypeName(t), x.cpfx)
    455 		x.genRequiredMethodVars(true)
    456 		switch t.Kind() {
    457 		case reflect.Array, reflect.Slice, reflect.Chan:
    458 			x.encListFallback("v", t)
    459 		case reflect.Map:
    460 			x.encMapFallback("v", t)
    461 		default:
    462 			halt.onerror(errGenExpectArrayOrMap)
    463 		}
    464 		x.line("}")
    465 		x.line("")
    466 
    467 		// generate dec functions for all these slice/map types.
    468 		x.varsfxreset()
    469 		x.linef("func (x %s) dec%s(v *%s, d *%sDecoder) {", x.hn, x.genMethodNameT(t), x.genTypeName(t), x.cpfx)
    470 		x.genRequiredMethodVars(false)
    471 		switch t.Kind() {
    472 		case reflect.Array, reflect.Slice, reflect.Chan:
    473 			x.decListFallback("v", rtid, t)
    474 		case reflect.Map:
    475 			x.decMapFallback("v", rtid, t)
    476 		default:
    477 			halt.onerror(errGenExpectArrayOrMap)
    478 		}
    479 		x.line("}")
    480 		x.line("")
    481 	}
    482 
    483 	for t := range x.ty {
    484 		x.tryGenIsZero(t)
    485 		x.line("")
    486 	}
    487 
    488 	x.line("")
    489 	return
    490 }
    491 
    492 func (x *genRunner) checkForSelfer(t reflect.Type, varname string) bool {
    493 	// return varname != genTopLevelVarName && t != x.tc
    494 	// the only time we checkForSelfer is if we are not at the TOP of the generated code.
    495 	return varname != genTopLevelVarName
    496 }
    497 
    498 func (x *genRunner) arr2str(t reflect.Type, s string) string {
    499 	if t.Kind() == reflect.Array {
    500 		return s
    501 	}
    502 	return ""
    503 }
    504 
    505 func (x *genRunner) genRequiredMethodVars(encode bool) {
    506 	x.line("var h " + x.hn)
    507 	if encode {
    508 		x.line("z, r := " + x.cpfx + "GenHelper().Encoder(e)")
    509 	} else {
    510 		x.line("z, r := " + x.cpfx + "GenHelper().Decoder(d)")
    511 	}
    512 	x.line("_, _, _ = h, z, r")
    513 }
    514 
    515 func (x *genRunner) genRefPkgs(t reflect.Type) {
    516 	if _, ok := x.is[t]; ok {
    517 		return
    518 	}
    519 	x.is[t] = struct{}{}
    520 	tpkg, tname := genImportPath(t), t.Name()
    521 	if tpkg != "" && tpkg != x.bp && tpkg != x.cp && tname != "" && tname[0] >= 'A' && tname[0] <= 'Z' {
    522 		if _, ok := x.im[tpkg]; !ok {
    523 			x.im[tpkg] = t
    524 			if idx := strings.LastIndex(tpkg, "/"); idx < 0 {
    525 				x.imn[tpkg] = tpkg
    526 			} else {
    527 				x.imc++
    528 				x.imn[tpkg] = "pkg" + strconv.FormatUint(x.imc, 10) + "_" + genGoIdentifier(tpkg[idx+1:], false)
    529 			}
    530 		}
    531 	}
    532 	switch t.Kind() {
    533 	case reflect.Array, reflect.Slice, reflect.Ptr, reflect.Chan:
    534 		x.genRefPkgs(t.Elem())
    535 	case reflect.Map:
    536 		x.genRefPkgs(t.Elem())
    537 		x.genRefPkgs(t.Key())
    538 	case reflect.Struct:
    539 		for i := 0; i < t.NumField(); i++ {
    540 			if fname := t.Field(i).Name; fname != "" && fname[0] >= 'A' && fname[0] <= 'Z' {
    541 				x.genRefPkgs(t.Field(i).Type)
    542 			}
    543 		}
    544 	}
    545 }
    546 
    547 // sayFalse will either say "false" or use a function call that returns false.
    548 func (x *genRunner) sayFalse() string {
    549 	x.f++
    550 	if x.f%2 == 0 {
    551 		return x.hn + "False()"
    552 	}
    553 	return "false"
    554 }
    555 
    556 // sayFalse will either say "true" or use a function call that returns true.
    557 func (x *genRunner) sayTrue() string {
    558 	x.f++
    559 	if x.f%2 == 0 {
    560 		return x.hn + "True()"
    561 	}
    562 	return "true"
    563 }
    564 
    565 func (x *genRunner) varsfx() string {
    566 	x.c++
    567 	return strconv.FormatUint(x.c, 10)
    568 }
    569 
    570 func (x *genRunner) varsfxreset() {
    571 	x.c = 0
    572 }
    573 
    574 func (x *genRunner) out(s string) {
    575 	_, err := io.WriteString(x.w, s)
    576 	genCheckErr(err)
    577 }
    578 
    579 func (x *genRunner) outf(s string, params ...interface{}) {
    580 	_, err := fmt.Fprintf(x.w, s, params...)
    581 	genCheckErr(err)
    582 }
    583 
    584 func (x *genRunner) line(s string) {
    585 	x.out(s)
    586 	if len(s) == 0 || s[len(s)-1] != '\n' {
    587 		x.out("\n")
    588 	}
    589 }
    590 
    591 func (x *genRunner) lineIf(s string) {
    592 	if s != "" {
    593 		x.line(s)
    594 	}
    595 }
    596 
    597 func (x *genRunner) linef(s string, params ...interface{}) {
    598 	x.outf(s, params...)
    599 	if len(s) == 0 || s[len(s)-1] != '\n' {
    600 		x.out("\n")
    601 	}
    602 }
    603 
    604 func (x *genRunner) genTypeName(t reflect.Type) (n string) {
    605 	// if the type has a PkgPath, which doesn't match the current package,
    606 	// then include it.
    607 	// We cannot depend on t.String() because it includes current package,
    608 	// or t.PkgPath because it includes full import path,
    609 	//
    610 	var ptrPfx string
    611 	for t.Kind() == reflect.Ptr {
    612 		ptrPfx += "*"
    613 		t = t.Elem()
    614 	}
    615 	if tn := t.Name(); tn != "" {
    616 		return ptrPfx + x.genTypeNamePrim(t)
    617 	}
    618 	switch t.Kind() {
    619 	case reflect.Map:
    620 		return ptrPfx + "map[" + x.genTypeName(t.Key()) + "]" + x.genTypeName(t.Elem())
    621 	case reflect.Slice:
    622 		return ptrPfx + "[]" + x.genTypeName(t.Elem())
    623 	case reflect.Array:
    624 		return ptrPfx + "[" + strconv.FormatInt(int64(t.Len()), 10) + "]" + x.genTypeName(t.Elem())
    625 	case reflect.Chan:
    626 		return ptrPfx + t.ChanDir().String() + " " + x.genTypeName(t.Elem())
    627 	default:
    628 		if t == intfTyp {
    629 			return ptrPfx + "interface{}"
    630 		} else {
    631 			return ptrPfx + x.genTypeNamePrim(t)
    632 		}
    633 	}
    634 }
    635 
    636 func (x *genRunner) genTypeNamePrim(t reflect.Type) (n string) {
    637 	if t.Name() == "" {
    638 		return t.String()
    639 	} else if genImportPath(t) == "" || genImportPath(t) == genImportPath(x.tc) {
    640 		return t.Name()
    641 	} else {
    642 		return x.imn[genImportPath(t)] + "." + t.Name()
    643 		// return t.String() // best way to get the package name inclusive
    644 	}
    645 }
    646 
    647 func (x *genRunner) genZeroValueR(t reflect.Type) string {
    648 	// if t is a named type, w
    649 	switch t.Kind() {
    650 	case reflect.Ptr, reflect.Interface, reflect.Chan, reflect.Func,
    651 		reflect.Slice, reflect.Map, reflect.Invalid:
    652 		return "nil"
    653 	case reflect.Bool:
    654 		return "false"
    655 	case reflect.String:
    656 		return `""`
    657 	case reflect.Struct, reflect.Array:
    658 		return x.genTypeName(t) + "{}"
    659 	default: // all numbers
    660 		return "0"
    661 	}
    662 }
    663 
    664 func (x *genRunner) genMethodNameT(t reflect.Type) (s string) {
    665 	return genMethodNameT(t, x.tc)
    666 }
    667 
    668 func (x *genRunner) tryGenIsZero(t reflect.Type) (done bool) {
    669 	if t.Kind() != reflect.Struct || t.Implements(isCodecEmptyerTyp) {
    670 		return
    671 	}
    672 
    673 	rtid := rt2id(t)
    674 
    675 	if _, ok := x.tz[rtid]; ok {
    676 		delete(x.ty, t)
    677 		return
    678 	}
    679 
    680 	x.tz[rtid] = true
    681 	delete(x.ty, t)
    682 
    683 	ti := x.ti.get(rtid, t)
    684 	tisfi := ti.sfi.source() // always use sequence from file. decStruct expects same thing.
    685 	varname := genTopLevelVarName
    686 
    687 	x.linef("func (%s *%s) IsCodecEmpty() bool {", varname, x.genTypeName(t))
    688 
    689 	anonSeen := make(map[reflect.Type]bool)
    690 	var omitline genBuf
    691 	for _, si := range tisfi {
    692 		if si.path.parent != nil {
    693 			root := si.path.root()
    694 			if anonSeen[root.typ] {
    695 				continue
    696 			}
    697 			anonSeen[root.typ] = true
    698 		}
    699 		t2 := genOmitEmptyLinePreChecks(varname, t, si, &omitline, true)
    700 		// if Ptr, we already checked if nil above
    701 		if t2.Type.Kind() != reflect.Ptr {
    702 			x.doEncOmitEmptyLine(t2, varname, &omitline)
    703 			omitline.s(" || ")
    704 		}
    705 	}
    706 	omitline.s(" false")
    707 	x.linef("return !(%s)", omitline.v())
    708 
    709 	x.line("}")
    710 	x.line("")
    711 	return true
    712 }
    713 
    714 func (x *genRunner) selfer(encode bool) {
    715 	t := x.tc
    716 	// ti := x.ti.get(rt2id(t), t)
    717 	t0 := t
    718 	// always make decode use a pointer receiver,
    719 	// and structs/arrays always use a ptr receiver (encode|decode)
    720 	isptr := !encode || t.Kind() == reflect.Array || (t.Kind() == reflect.Struct && t != timeTyp)
    721 	x.varsfxreset()
    722 
    723 	fnSigPfx := "func (" + genTopLevelVarName + " "
    724 	if isptr {
    725 		fnSigPfx += "*"
    726 	}
    727 	fnSigPfx += x.genTypeName(t)
    728 	x.out(fnSigPfx)
    729 
    730 	if isptr {
    731 		t = reflect.PtrTo(t)
    732 	}
    733 	if encode {
    734 		x.line(") CodecEncodeSelf(e *" + x.cpfx + "Encoder) {")
    735 		x.genRequiredMethodVars(true)
    736 		if t0.Kind() == reflect.Struct {
    737 			x.linef("if z.EncBasicHandle().CheckCircularRef { z.EncEncode(%s); return }", genTopLevelVarName)
    738 		}
    739 		x.encVar(genTopLevelVarName, t)
    740 	} else {
    741 		x.line(") CodecDecodeSelf(d *" + x.cpfx + "Decoder) {")
    742 		x.genRequiredMethodVars(false)
    743 		// do not use decVar, as there is no need to check TryDecodeAsNil
    744 		// or way to elegantly handle that, and also setting it to a
    745 		// non-nil value doesn't affect the pointer passed.
    746 		// x.decVar(genTopLevelVarName, t, false)
    747 		x.dec(genTopLevelVarName, t0, true)
    748 	}
    749 	x.line("}")
    750 	x.line("")
    751 
    752 	if encode || t0.Kind() != reflect.Struct {
    753 		return
    754 	}
    755 
    756 	// write is containerMap
    757 	x.out(fnSigPfx)
    758 	x.line(") codecDecodeSelfFromMap(l int, d *" + x.cpfx + "Decoder) {")
    759 	x.genRequiredMethodVars(false)
    760 	x.decStructMap(genTopLevelVarName, "l", rt2id(t0), t0)
    761 	x.line("}")
    762 	x.line("")
    763 
    764 	// write containerArray
    765 	x.out(fnSigPfx)
    766 	x.line(") codecDecodeSelfFromArray(l int, d *" + x.cpfx + "Decoder) {")
    767 	x.genRequiredMethodVars(false)
    768 	x.decStructArray(genTopLevelVarName, "l", "return", rt2id(t0), t0)
    769 	x.line("}")
    770 	x.line("")
    771 
    772 }
    773 
    774 // used for chan, array, slice, map
    775 func (x *genRunner) xtraSM(varname string, t reflect.Type, ti *typeInfo, encode, isptr bool) {
    776 	var ptrPfx, addrPfx string
    777 	if isptr {
    778 		ptrPfx = "*"
    779 	} else {
    780 		addrPfx = "&"
    781 	}
    782 	if encode {
    783 		x.linef("h.enc%s((%s%s)(%s), e)", x.genMethodNameT(t), ptrPfx, x.genTypeName(t), varname)
    784 	} else {
    785 		x.linef("h.dec%s((*%s)(%s%s), d)", x.genMethodNameT(t), x.genTypeName(t), addrPfx, varname)
    786 	}
    787 	x.registerXtraT(t, ti)
    788 }
    789 
    790 func (x *genRunner) registerXtraT(t reflect.Type, ti *typeInfo) {
    791 	// recursively register the types
    792 	tk := t.Kind()
    793 	if tk == reflect.Ptr {
    794 		x.registerXtraT(t.Elem(), nil)
    795 		return
    796 	}
    797 	if _, ok := x.tm[t]; ok {
    798 		return
    799 	}
    800 
    801 	switch tk {
    802 	case reflect.Chan, reflect.Slice, reflect.Array, reflect.Map:
    803 	default:
    804 		return
    805 	}
    806 	// only register the type if it will not default to a fast-path
    807 	if ti == nil {
    808 		ti = x.ti.get(rt2id(t), t)
    809 	}
    810 	if _, rtidu := genFastpathUnderlying(t, ti.rtid, ti); fastpathAvIndex(rtidu) != -1 {
    811 		return
    812 	}
    813 	x.tm[t] = struct{}{}
    814 	x.ts = append(x.ts, t)
    815 	// check if this refers to any xtra types eg. a slice of array: add the array
    816 	x.registerXtraT(t.Elem(), nil)
    817 	if tk == reflect.Map {
    818 		x.registerXtraT(t.Key(), nil)
    819 	}
    820 }
    821 
    822 // encVar will encode a variable.
    823 // The parameter, t, is the reflect.Type of the variable itself
    824 func (x *genRunner) encVar(varname string, t reflect.Type) {
    825 	var checkNil bool
    826 	// case reflect.Ptr, reflect.Interface, reflect.Slice, reflect.Map, reflect.Chan:
    827 	// do not include checkNil for slice and maps, as we already checkNil below it
    828 	switch t.Kind() {
    829 	case reflect.Ptr, reflect.Interface, reflect.Chan:
    830 		checkNil = true
    831 	}
    832 	x.encVarChkNil(varname, t, checkNil)
    833 }
    834 
    835 func (x *genRunner) encVarChkNil(varname string, t reflect.Type, checkNil bool) {
    836 	if checkNil {
    837 		x.linef("if %s == nil { r.EncodeNil() } else {", varname)
    838 	}
    839 
    840 	switch t.Kind() {
    841 	case reflect.Ptr:
    842 		telem := t.Elem()
    843 		tek := telem.Kind()
    844 		if tek == reflect.Array || (tek == reflect.Struct && telem != timeTyp) {
    845 			x.enc(varname, genNonPtr(t), true)
    846 			break
    847 		}
    848 		i := x.varsfx()
    849 		x.line(genTempVarPfx + i + " := *" + varname)
    850 		x.enc(genTempVarPfx+i, genNonPtr(t), false)
    851 	case reflect.Struct, reflect.Array:
    852 		if t == timeTyp {
    853 			x.enc(varname, t, false)
    854 			break
    855 		}
    856 		i := x.varsfx()
    857 		x.line(genTempVarPfx + i + " := &" + varname)
    858 		x.enc(genTempVarPfx+i, t, true)
    859 	default:
    860 		x.enc(varname, t, false)
    861 	}
    862 
    863 	if checkNil {
    864 		x.line("}")
    865 	}
    866 }
    867 
    868 // enc will encode a variable (varname) of type t, where t represents T.
    869 // if t is !time.Time and t is of kind reflect.Struct or reflect.Array, varname is of type *T
    870 // (to prevent copying),
    871 // else t is of type T
    872 func (x *genRunner) enc(varname string, t reflect.Type, isptr bool) {
    873 	rtid := rt2id(t)
    874 	ti2 := x.ti.get(rtid, t)
    875 	// We call CodecEncodeSelf if one of the following are honored:
    876 	//   - the type already implements Selfer, call that
    877 	//   - the type has a Selfer implementation just created, use that
    878 	//   - the type is in the list of the ones we will generate for, but it is not currently being generated
    879 
    880 	mi := x.varsfx()
    881 	// tptr := reflect.PtrTo(t)
    882 	// tk := t.Kind()
    883 
    884 	// check if
    885 	//   - type is time.Time, RawExt, Raw
    886 	//   - the type implements (Text|JSON|Binary)(Unm|M)arshal
    887 
    888 	var hasIf genIfClause
    889 	defer hasIf.end(x) // end if block (if necessary)
    890 
    891 	var ptrPfx, addrPfx string
    892 	if isptr {
    893 		ptrPfx = "*"
    894 	} else {
    895 		addrPfx = "&"
    896 	}
    897 
    898 	if t == timeTyp {
    899 		x.linef("%s z.EncBasicHandle().TimeBuiltin() { r.EncodeTime(%s%s)", hasIf.c(false), ptrPfx, varname)
    900 		// return
    901 	}
    902 	if t == rawTyp {
    903 		x.linef("%s z.EncRaw(%s%s)", hasIf.c(true), ptrPfx, varname)
    904 		return
    905 	}
    906 	if t == rawExtTyp {
    907 		x.linef("%s r.EncodeRawExt(%s%s)", hasIf.c(true), addrPfx, varname)
    908 		return
    909 	}
    910 	// only check for extensions if extensions are configured,
    911 	// and the type is named, and has a packagePath,
    912 	// and this is not the CodecEncodeSelf or CodecDecodeSelf method (i.e. it is not a Selfer)
    913 	if !x.nx && varname != genTopLevelVarName && t != genStringDecAsBytesTyp &&
    914 		t != genStringDecZCTyp && genImportPath(t) != "" && t.Name() != "" {
    915 		yy := fmt.Sprintf("%sxt%s", genTempVarPfx, mi)
    916 		x.linef("%s %s := z.Extension(%s); %s != nil { z.EncExtension(%s, %s) ",
    917 			hasIf.c(false), yy, varname, yy, varname, yy)
    918 	}
    919 
    920 	if x.checkForSelfer(t, varname) {
    921 		if ti2.flagSelfer {
    922 			x.linef("%s %s.CodecEncodeSelf(e)", hasIf.c(true), varname)
    923 			return
    924 		}
    925 		if ti2.flagSelferPtr {
    926 			if isptr {
    927 				x.linef("%s %s.CodecEncodeSelf(e)", hasIf.c(true), varname)
    928 			} else {
    929 				x.linef("%s %ssf%s := &%s", hasIf.c(true), genTempVarPfx, mi, varname)
    930 				x.linef("%ssf%s.CodecEncodeSelf(e)", genTempVarPfx, mi)
    931 			}
    932 			return
    933 		}
    934 
    935 		if _, ok := x.te[rtid]; ok {
    936 			x.linef("%s %s.CodecEncodeSelf(e)", hasIf.c(true), varname)
    937 			return
    938 		}
    939 	}
    940 
    941 	inlist := false
    942 	for _, t0 := range x.t {
    943 		if t == t0 {
    944 			inlist = true
    945 			if x.checkForSelfer(t, varname) {
    946 				x.linef("%s %s.CodecEncodeSelf(e)", hasIf.c(true), varname)
    947 				return
    948 			}
    949 			break
    950 		}
    951 	}
    952 
    953 	var rtidAdded bool
    954 	if t == x.tc {
    955 		x.te[rtid] = true
    956 		rtidAdded = true
    957 	}
    958 
    959 	if ti2.flagBinaryMarshaler {
    960 		x.linef("%s z.EncBinary() { z.EncBinaryMarshal(%s%v) ", hasIf.c(false), ptrPfx, varname)
    961 	} else if ti2.flagBinaryMarshalerPtr {
    962 		x.linef("%s z.EncBinary() { z.EncBinaryMarshal(%s%v) ", hasIf.c(false), addrPfx, varname)
    963 	}
    964 
    965 	if ti2.flagJsonMarshaler {
    966 		x.linef("%s !z.EncBinary() && z.IsJSONHandle() { z.EncJSONMarshal(%s%v) ", hasIf.c(false), ptrPfx, varname)
    967 	} else if ti2.flagJsonMarshalerPtr {
    968 		x.linef("%s !z.EncBinary() && z.IsJSONHandle() { z.EncJSONMarshal(%s%v) ", hasIf.c(false), addrPfx, varname)
    969 	} else if ti2.flagTextMarshaler {
    970 		x.linef("%s !z.EncBinary() { z.EncTextMarshal(%s%v) ", hasIf.c(false), ptrPfx, varname)
    971 	} else if ti2.flagTextMarshalerPtr {
    972 		x.linef("%s !z.EncBinary() { z.EncTextMarshal(%s%v) ", hasIf.c(false), addrPfx, varname)
    973 	}
    974 
    975 	x.lineIf(hasIf.c(true))
    976 
    977 	switch t.Kind() {
    978 	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
    979 		x.line("r.EncodeInt(int64(" + varname + "))")
    980 	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
    981 		x.line("r.EncodeUint(uint64(" + varname + "))")
    982 	case reflect.Float32:
    983 		x.line("r.EncodeFloat32(float32(" + varname + "))")
    984 	case reflect.Float64:
    985 		x.line("r.EncodeFloat64(float64(" + varname + "))")
    986 	case reflect.Complex64:
    987 		x.linef("z.EncEncodeComplex64(complex64(%s))", varname)
    988 	case reflect.Complex128:
    989 		x.linef("z.EncEncodeComplex128(complex128(%s))", varname)
    990 	case reflect.Bool:
    991 		x.line("r.EncodeBool(bool(" + varname + "))")
    992 	case reflect.String:
    993 		x.linef("r.EncodeString(string(%s))", varname)
    994 	case reflect.Chan:
    995 		x.xtraSM(varname, t, ti2, true, false)
    996 		// x.encListFallback(varname, rtid, t)
    997 	case reflect.Array:
    998 		_, rtidu := genFastpathUnderlying(t, rtid, ti2)
    999 		if fastpathAvIndex(rtidu) != -1 {
   1000 			g := x.newFastpathGenV(ti2.key)
   1001 			x.linef("z.F.%sV((%s)(%s[:]), e)", g.MethodNamePfx("Enc", false), x.genTypeName(ti2.key), varname)
   1002 		} else {
   1003 			x.xtraSM(varname, t, ti2, true, true)
   1004 		}
   1005 	case reflect.Slice:
   1006 		// if nil, call dedicated function
   1007 		// if a []byte, call dedicated function
   1008 		// if a known fastpath slice, call dedicated function
   1009 		// else write encode function in-line.
   1010 		// - if elements are primitives or Selfers, call dedicated function on each member.
   1011 		// - else call Encoder.encode(XXX) on it.
   1012 
   1013 		x.linef("if %s == nil { r.EncodeNil() } else {", varname)
   1014 		if rtid == uint8SliceTypId {
   1015 			x.line("r.EncodeStringBytesRaw([]byte(" + varname + "))")
   1016 		} else {
   1017 			tu, rtidu := genFastpathUnderlying(t, rtid, ti2)
   1018 			if fastpathAvIndex(rtidu) != -1 {
   1019 				g := x.newFastpathGenV(tu)
   1020 				if rtid == rtidu {
   1021 					x.linef("z.F.%sV(%s, e)", g.MethodNamePfx("Enc", false), varname)
   1022 				} else {
   1023 					x.linef("z.F.%sV((%s)(%s), e)", g.MethodNamePfx("Enc", false), x.genTypeName(tu), varname)
   1024 				}
   1025 			} else {
   1026 				x.xtraSM(varname, t, ti2, true, false)
   1027 			}
   1028 		}
   1029 		x.linef("} // end block: if %s slice == nil", varname)
   1030 	case reflect.Map:
   1031 		// if nil, call dedicated function
   1032 		// if a known fastpath map, call dedicated function
   1033 		// else write encode function in-line.
   1034 		// - if elements are primitives or Selfers, call dedicated function on each member.
   1035 		// - else call Encoder.encode(XXX) on it.
   1036 		x.linef("if %s == nil { r.EncodeNil() } else {", varname)
   1037 		tu, rtidu := genFastpathUnderlying(t, rtid, ti2)
   1038 		if fastpathAvIndex(rtidu) != -1 {
   1039 			g := x.newFastpathGenV(tu)
   1040 			if rtid == rtidu {
   1041 				x.linef("z.F.%sV(%s, e)", g.MethodNamePfx("Enc", false), varname)
   1042 			} else {
   1043 				x.linef("z.F.%sV((%s)(%s), e)", g.MethodNamePfx("Enc", false), x.genTypeName(tu), varname)
   1044 			}
   1045 		} else {
   1046 			x.xtraSM(varname, t, ti2, true, false)
   1047 		}
   1048 		x.linef("} // end block: if %s map == nil", varname)
   1049 	case reflect.Struct:
   1050 		if !inlist {
   1051 			delete(x.te, rtid)
   1052 			x.line("z.EncFallback(" + varname + ")")
   1053 			break
   1054 		}
   1055 		x.encStruct(varname, rtid, t)
   1056 	default:
   1057 		if rtidAdded {
   1058 			delete(x.te, rtid)
   1059 		}
   1060 		x.line("z.EncFallback(" + varname + ")")
   1061 	}
   1062 }
   1063 
   1064 func (x *genRunner) encZero(t reflect.Type) {
   1065 	switch t.Kind() {
   1066 	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   1067 		x.line("r.EncodeInt(0)")
   1068 	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   1069 		x.line("r.EncodeUint(0)")
   1070 	case reflect.Float32:
   1071 		x.line("r.EncodeFloat32(0)")
   1072 	case reflect.Float64:
   1073 		x.line("r.EncodeFloat64(0)")
   1074 	case reflect.Complex64:
   1075 		x.line("z.EncEncodeComplex64(0)")
   1076 	case reflect.Complex128:
   1077 		x.line("z.EncEncodeComplex128(0)")
   1078 	case reflect.Bool:
   1079 		x.line("r.EncodeBool(false)")
   1080 	case reflect.String:
   1081 		x.linef(`r.EncodeString("")`)
   1082 	default:
   1083 		x.line("r.EncodeNil()")
   1084 	}
   1085 }
   1086 
   1087 func genOmitEmptyLinePreChecks(varname string, t reflect.Type, si *structFieldInfo, omitline *genBuf, oneLevel bool) (t2 reflect.StructField) {
   1088 	// xdebug2f("calling genOmitEmptyLinePreChecks on: %v", t)
   1089 	t2typ := t
   1090 	varname3 := varname
   1091 	// go through the loop, record the t2 field explicitly,
   1092 	// and gather the omit line if embedded in pointers.
   1093 	fullpath := si.path.fullpath()
   1094 	for i, path := range fullpath {
   1095 		for t2typ.Kind() == reflect.Ptr {
   1096 			t2typ = t2typ.Elem()
   1097 		}
   1098 		t2 = t2typ.Field(int(path.index))
   1099 		t2typ = t2.Type
   1100 		varname3 = varname3 + "." + t2.Name
   1101 		// do not include actual field in the omit line.
   1102 		// that is done subsequently (right after - below).
   1103 		if i+1 < len(fullpath) && t2typ.Kind() == reflect.Ptr {
   1104 			omitline.s(varname3).s(" != nil && ")
   1105 		}
   1106 		if oneLevel {
   1107 			break
   1108 		}
   1109 	}
   1110 	return
   1111 }
   1112 
   1113 func (x *genRunner) doEncOmitEmptyLine(t2 reflect.StructField, varname string, buf *genBuf) {
   1114 	x.f = 0
   1115 	x.encOmitEmptyLine(t2, varname, buf)
   1116 }
   1117 
   1118 func (x *genRunner) encOmitEmptyLine(t2 reflect.StructField, varname string, buf *genBuf) {
   1119 	// xdebugf("calling encOmitEmptyLine on: %v", t2.Type)
   1120 	// smartly check omitEmpty on a struct type, as it may contain uncomparable map/slice/etc.
   1121 	// also, for maps/slices, check if len ! 0 (not if == zero value)
   1122 	varname2 := varname + "." + t2.Name
   1123 	switch t2.Type.Kind() {
   1124 	case reflect.Struct:
   1125 		rtid2 := rt2id(t2.Type)
   1126 		ti2 := x.ti.get(rtid2, t2.Type)
   1127 		// xdebugf(">>>> structfield: omitempty: type: %s, field: %s\n", t2.Type.Name(), t2.Name)
   1128 		if ti2.rtid == timeTypId {
   1129 			buf.s("!(").s(varname2).s(".IsZero())")
   1130 			break
   1131 		}
   1132 		if ti2.flagIsZeroerPtr || ti2.flagIsZeroer {
   1133 			buf.s("!(").s(varname2).s(".IsZero())")
   1134 			break
   1135 		}
   1136 		if t2.Type.Implements(isCodecEmptyerTyp) {
   1137 			buf.s("!(").s(varname2).s(".IsCodecEmpty())")
   1138 			break
   1139 		}
   1140 		_, ok := x.tz[rtid2]
   1141 		if ok {
   1142 			buf.s("!(").s(varname2).s(".IsCodecEmpty())")
   1143 			break
   1144 		}
   1145 		// if we *should* create a IsCodecEmpty for it, but haven't yet, add it here
   1146 		// _, ok = x.ty[rtid2]
   1147 		if genImportPath(t2.Type) == x.bp {
   1148 			x.ty[t2.Type] = struct{}{}
   1149 			buf.s("!(").s(varname2).s(".IsCodecEmpty())")
   1150 			break
   1151 		}
   1152 		if ti2.flagComparable {
   1153 			buf.s(varname2).s(" != ").s(x.genZeroValueR(t2.Type))
   1154 			break
   1155 		}
   1156 		// buf.s("(")
   1157 		buf.s(x.sayFalse()) // buf.s("false")
   1158 		var wrote bool
   1159 		for i, n := 0, t2.Type.NumField(); i < n; i++ {
   1160 			f := t2.Type.Field(i)
   1161 			if f.PkgPath != "" { // unexported
   1162 				continue
   1163 			}
   1164 			buf.s(" || ")
   1165 			x.encOmitEmptyLine(f, varname2, buf)
   1166 			wrote = true
   1167 		}
   1168 		if !wrote {
   1169 			buf.s(" || ").s(x.sayTrue())
   1170 		}
   1171 		//buf.s(")")
   1172 	case reflect.Bool:
   1173 		buf.s("bool(").s(varname2).s(")")
   1174 	case reflect.Map, reflect.Slice, reflect.Chan:
   1175 		buf.s("len(").s(varname2).s(") != 0")
   1176 	case reflect.Array:
   1177 		tlen := t2.Type.Len()
   1178 		if tlen == 0 {
   1179 			buf.s(x.sayFalse())
   1180 		} else if t2.Type.Comparable() {
   1181 			buf.s(varname2).s(" != ").s(x.genZeroValueR(t2.Type))
   1182 		} else { // then we cannot even compare the individual values
   1183 			// TODO use playground to check if you can compare to a
   1184 			// zero value of an array, even if array not comparable.
   1185 			buf.s(x.sayTrue())
   1186 		}
   1187 	default:
   1188 		buf.s(varname2).s(" != ").s(x.genZeroValueR(t2.Type))
   1189 	}
   1190 }
   1191 
   1192 func (x *genRunner) encStruct(varname string, rtid uintptr, t reflect.Type) {
   1193 	// Use knowledge from structfieldinfo (mbs, encodable fields. Ignore omitempty. )
   1194 	// replicate code in kStruct i.e. for each field, deref type to non-pointer, and call x.enc on it
   1195 
   1196 	// if t === type currently running selfer on, do for all
   1197 	ti := x.ti.get(rtid, t)
   1198 	i := x.varsfx()
   1199 	// sepVarname := genTempVarPfx + "sep" + i
   1200 	numfieldsvar := genTempVarPfx + "q" + i
   1201 	ti2arrayvar := genTempVarPfx + "r" + i
   1202 	struct2arrvar := genTempVarPfx + "2arr" + i
   1203 
   1204 	tisfi := ti.sfi.source() // always use sequence from file. decStruct expects same thing.
   1205 
   1206 	type genFQN struct {
   1207 		i       string
   1208 		fqname  string
   1209 		nilLine genBuf
   1210 		nilVar  string
   1211 		canNil  bool
   1212 		sf      reflect.StructField
   1213 	}
   1214 
   1215 	genFQNs := make([]genFQN, len(tisfi))
   1216 	si2Pos := make(map[*structFieldInfo]int) // stores position in sorted structFieldInfos
   1217 
   1218 	for j, si := range tisfi {
   1219 		si2Pos[si] = j
   1220 		q := &genFQNs[j]
   1221 		q.i = x.varsfx()
   1222 		q.nilVar = genTempVarPfx + "n" + q.i
   1223 		q.canNil = false
   1224 		q.fqname = varname
   1225 		{
   1226 			t2typ := t
   1227 			fullpath := si.path.fullpath()
   1228 			for _, path := range fullpath {
   1229 				for t2typ.Kind() == reflect.Ptr {
   1230 					t2typ = t2typ.Elem()
   1231 				}
   1232 				q.sf = t2typ.Field(int(path.index))
   1233 				t2typ = q.sf.Type
   1234 				q.fqname += "." + q.sf.Name
   1235 				if t2typ.Kind() == reflect.Ptr {
   1236 					if !q.canNil {
   1237 						q.nilLine.f("%s == nil", q.fqname)
   1238 						q.canNil = true
   1239 					} else {
   1240 						q.nilLine.f(" || %s == nil", q.fqname)
   1241 					}
   1242 				}
   1243 			}
   1244 		}
   1245 	}
   1246 
   1247 	// x.line(sepVarname + " := !z.EncBinary()")
   1248 	x.linef("%s := z.EncBasicHandle().StructToArray", struct2arrvar)
   1249 	// x.linef("_, _ = %s, %s", sepVarname, struct2arrvar)
   1250 	x.linef("_ = %s", struct2arrvar)
   1251 	x.linef("const %s bool = %v // struct tag has 'toArray'", ti2arrayvar, ti.toArray)
   1252 
   1253 	for j := range genFQNs {
   1254 		q := &genFQNs[j]
   1255 		if q.canNil {
   1256 			x.linef("var %s bool = %s", q.nilVar, q.nilLine.v())
   1257 		}
   1258 	}
   1259 
   1260 	// var nn int
   1261 	// due to omitEmpty, we need to calculate the
   1262 	// number of non-empty things we write out first.
   1263 	// This is required as we need to pre-determine the size of the container,
   1264 	// to support length-prefixing.
   1265 	omitEmptySometimes := x.omitEmptyWhen == nil
   1266 	omitEmptyAlways := (x.omitEmptyWhen != nil && *(x.omitEmptyWhen))
   1267 	// omitEmptyNever := (x.omitEmptyWhen != nil && !*(x.omitEmptyWhen))
   1268 
   1269 	toArraySometimes := x.toArrayWhen == nil
   1270 	toArrayAlways := (x.toArrayWhen != nil && *(x.toArrayWhen))
   1271 	toArrayNever := (x.toArrayWhen != nil && !(*(x.toArrayWhen)))
   1272 
   1273 	if (omitEmptySometimes && ti.anyOmitEmpty) || omitEmptyAlways {
   1274 		x.linef("var %s = [%v]bool{ // should field at this index be written?", numfieldsvar, len(tisfi))
   1275 
   1276 		for _, si := range tisfi {
   1277 			if omitEmptySometimes && !si.path.omitEmpty {
   1278 				x.linef("true, // %s", si.encName) // si.fieldName)
   1279 				continue
   1280 			}
   1281 			var omitline genBuf
   1282 			t2 := genOmitEmptyLinePreChecks(varname, t, si, &omitline, false)
   1283 			x.doEncOmitEmptyLine(t2, varname, &omitline)
   1284 			x.linef("%s, // %s", omitline.v(), si.encName) // si.fieldName)
   1285 		}
   1286 		x.line("}")
   1287 		x.linef("_ = %s", numfieldsvar)
   1288 	}
   1289 
   1290 	if toArraySometimes {
   1291 		x.linef("if %s || %s {", ti2arrayvar, struct2arrvar) // if ti.toArray
   1292 	}
   1293 	if toArraySometimes || toArrayAlways {
   1294 		x.linef("z.EncWriteArrayStart(%d)", len(tisfi))
   1295 
   1296 		for j, si := range tisfi {
   1297 			doOmitEmptyCheck := (omitEmptySometimes && si.path.omitEmpty) || omitEmptyAlways
   1298 			q := &genFQNs[j]
   1299 			// if the type of the field is a Selfer, or one of the ones
   1300 			if q.canNil {
   1301 				x.linef("if %s { z.EncWriteArrayElem(); r.EncodeNil() } else { ", q.nilVar)
   1302 			}
   1303 			x.linef("z.EncWriteArrayElem()")
   1304 			if doOmitEmptyCheck {
   1305 				x.linef("if %s[%v] {", numfieldsvar, j)
   1306 			}
   1307 			x.encVarChkNil(q.fqname, q.sf.Type, false)
   1308 			if doOmitEmptyCheck {
   1309 				x.linef("} else {")
   1310 				x.encZero(q.sf.Type)
   1311 				x.linef("}")
   1312 			}
   1313 			if q.canNil {
   1314 				x.line("}")
   1315 			}
   1316 		}
   1317 
   1318 		x.line("z.EncWriteArrayEnd()")
   1319 	}
   1320 	if toArraySometimes {
   1321 		x.linef("} else {") // if not ti.toArray
   1322 	}
   1323 	if toArraySometimes || toArrayNever {
   1324 		if (omitEmptySometimes && ti.anyOmitEmpty) || omitEmptyAlways {
   1325 			x.linef("var %snn%s int", genTempVarPfx, i)
   1326 			x.linef("for _, b := range %s { if b { %snn%s++ } }", numfieldsvar, genTempVarPfx, i)
   1327 			x.linef("z.EncWriteMapStart(%snn%s)", genTempVarPfx, i)
   1328 			x.linef("%snn%s = %v", genTempVarPfx, i, 0)
   1329 		} else {
   1330 			x.linef("z.EncWriteMapStart(%d)", len(tisfi))
   1331 		}
   1332 
   1333 		fn := func(tisfi []*structFieldInfo) {
   1334 			// tisfi here may be source or sorted, so use the src position stored elsewhere
   1335 			for _, si := range tisfi {
   1336 				pos := si2Pos[si]
   1337 				q := &genFQNs[pos]
   1338 				doOmitEmptyCheck := (omitEmptySometimes && si.path.omitEmpty) || omitEmptyAlways
   1339 				if doOmitEmptyCheck {
   1340 					x.linef("if %s[%v] {", numfieldsvar, pos)
   1341 				}
   1342 				x.linef("z.EncWriteMapElemKey()")
   1343 
   1344 				// emulate EncStructFieldKey
   1345 				switch ti.keyType {
   1346 				case valueTypeInt:
   1347 					x.linef("r.EncodeInt(z.M.Int(strconv.ParseInt(`%s`, 10, 64)))", si.encName)
   1348 				case valueTypeUint:
   1349 					x.linef("r.EncodeUint(z.M.Uint(strconv.ParseUint(`%s`, 10, 64)))", si.encName)
   1350 				case valueTypeFloat:
   1351 					x.linef("r.EncodeFloat64(z.M.Float(strconv.ParseFloat(`%s`, 64)))", si.encName)
   1352 				default: // string
   1353 					if x.jsonOnlyWhen == nil {
   1354 						if si.path.encNameAsciiAlphaNum {
   1355 							x.linef(`if z.IsJSONHandle() { z.EncWr().WriteStr("\"%s\"") } else { `, si.encName)
   1356 						}
   1357 						x.linef("r.EncodeString(`%s`)", si.encName)
   1358 						if si.path.encNameAsciiAlphaNum {
   1359 							x.linef("}")
   1360 						}
   1361 					} else if *(x.jsonOnlyWhen) {
   1362 						if si.path.encNameAsciiAlphaNum {
   1363 							x.linef(`z.EncWr().WriteStr("\"%s\"")`, si.encName)
   1364 						} else {
   1365 							x.linef("r.EncodeString(`%s`)", si.encName)
   1366 						}
   1367 					} else {
   1368 						x.linef("r.EncodeString(`%s`)", si.encName)
   1369 					}
   1370 				}
   1371 				x.line("z.EncWriteMapElemValue()")
   1372 				if q.canNil {
   1373 					x.line("if " + q.nilVar + " { r.EncodeNil() } else { ")
   1374 					x.encVarChkNil(q.fqname, q.sf.Type, false)
   1375 					x.line("}")
   1376 				} else {
   1377 					x.encVarChkNil(q.fqname, q.sf.Type, false)
   1378 				}
   1379 				if doOmitEmptyCheck {
   1380 					x.line("}")
   1381 				}
   1382 			}
   1383 		}
   1384 
   1385 		if genStructCanonical {
   1386 			x.linef("if z.EncBasicHandle().Canonical {") // if Canonical block
   1387 			fn(ti.sfi.sorted())
   1388 			x.linef("} else {") // else !Canonical block
   1389 			fn(ti.sfi.source())
   1390 			x.linef("}") // end if Canonical block
   1391 		} else {
   1392 			fn(tisfi)
   1393 		}
   1394 
   1395 		x.line("z.EncWriteMapEnd()")
   1396 	}
   1397 	if toArraySometimes {
   1398 		x.linef("} ") // end if/else ti.toArray
   1399 	}
   1400 }
   1401 
   1402 func (x *genRunner) encListFallback(varname string, t reflect.Type) {
   1403 	x.linef("if %s == nil { r.EncodeNil(); return }", varname)
   1404 	elemBytes := t.Elem().Kind() == reflect.Uint8
   1405 	if t.AssignableTo(uint8SliceTyp) {
   1406 		x.linef("r.EncodeStringBytesRaw([]byte(%s))", varname)
   1407 		return
   1408 	}
   1409 	if t.Kind() == reflect.Array && elemBytes {
   1410 		x.linef("r.EncodeStringBytesRaw(((*[%d]byte)(%s))[:])", t.Len(), varname)
   1411 		return
   1412 	}
   1413 	i := x.varsfx()
   1414 	if t.Kind() == reflect.Chan {
   1415 		type ts struct {
   1416 			Label, Chan, Slice, Sfx string
   1417 		}
   1418 		tm, err := template.New("").Parse(genEncChanTmpl)
   1419 		genCheckErr(err)
   1420 		x.linef("if %s == nil { r.EncodeNil() } else { ", varname)
   1421 		x.linef("var sch%s []%s", i, x.genTypeName(t.Elem()))
   1422 		err = tm.Execute(x.w, &ts{"Lsch" + i, varname, "sch" + i, i})
   1423 		genCheckErr(err)
   1424 		if elemBytes {
   1425 			x.linef("r.EncodeStringBytesRaw([]byte(%s))", "sch"+i)
   1426 			x.line("}")
   1427 			return
   1428 		}
   1429 		varname = "sch" + i
   1430 	}
   1431 
   1432 	x.line("z.EncWriteArrayStart(len(" + varname + "))")
   1433 
   1434 	// x.linef("for _, %sv%s := range %s {", genTempVarPfx, i, varname)
   1435 	// x.linef("z.EncWriteArrayElem()")
   1436 	// x.encVar(genTempVarPfx+"v"+i, t.Elem())
   1437 	// x.line("}")
   1438 
   1439 	x.linef("for %sv%s := range %s {", genTempVarPfx, i, varname)
   1440 	x.linef("z.EncWriteArrayElem()")
   1441 	x.encVar(fmt.Sprintf("%s[%sv%s]", varname, genTempVarPfx, i), t.Elem())
   1442 	x.line("}")
   1443 
   1444 	x.line("z.EncWriteArrayEnd()")
   1445 	if t.Kind() == reflect.Chan {
   1446 		x.line("}")
   1447 	}
   1448 }
   1449 
   1450 func (x *genRunner) encMapFallback(varname string, t reflect.Type) {
   1451 	x.linef("if %s == nil { r.EncodeNil()", varname)
   1452 	x.line("} else if z.EncBasicHandle().Canonical {")
   1453 
   1454 	// Solve for easy case accomodated by sort package without reflection i.e.
   1455 	// map keys of type: float, int, string (pre-defined/builtin types).
   1456 	//
   1457 	// To do this, we will get the keys into an array of uint64|float64|string,
   1458 	// sort them, then write them out, and grab the value and encode it appropriately
   1459 	tkey := t.Key()
   1460 	tkind := tkey.Kind()
   1461 	// tkeybase := tkey
   1462 	// for tkeybase.Kind() == reflect.Ptr {
   1463 	// 	tkeybase = tkeybase.Elem()
   1464 	// }
   1465 	// tikey := x.ti.get(rt2id(tkeybase), tkeybase)
   1466 
   1467 	// pre-defined types have a name and no pkgpath and appropriate kind
   1468 	predeclared := tkey.PkgPath() == "" && tkey.Name() != ""
   1469 
   1470 	canonSortKind := reflect.Invalid
   1471 	switch tkind {
   1472 	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   1473 		canonSortKind = reflect.Int64
   1474 	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
   1475 		canonSortKind = reflect.Uint64
   1476 	case reflect.Float32, reflect.Float64:
   1477 		canonSortKind = reflect.Float64
   1478 	case reflect.String:
   1479 		canonSortKind = reflect.String
   1480 	}
   1481 
   1482 	var i string = x.varsfx()
   1483 
   1484 	fnCanonNumBoolStrKind := func() {
   1485 		if !predeclared {
   1486 			x.linef("var %svv%s %s", genTempVarPfx, i, x.genTypeName(tkey))
   1487 			x.linef("%sencfn%s := z.EncFnGivenAddr(&%svv%s)", genTempVarPfx, i, genTempVarPfx, i)
   1488 		}
   1489 		// get the type, get the slice type its mapped to, and complete the code
   1490 		x.linef("%ss%s := make([]%s, 0, len(%s))", genTempVarPfx, i, canonSortKind, varname)
   1491 		x.linef("for k, _ := range %s {", varname)
   1492 		x.linef("  %ss%s = append(%ss%s, %s(k))", genTempVarPfx, i, genTempVarPfx, i, canonSortKind)
   1493 		x.linef("}")
   1494 		x.linef("sort.Sort(%s%sSlice(%ss%s))", x.hn, canonSortKind, genTempVarPfx, i)
   1495 		x.linef("z.EncWriteMapStart(len(%s))", varname)
   1496 		x.linef("for _, %sv%s := range %ss%s {", genTempVarPfx, i, genTempVarPfx, i)
   1497 		x.linef("  z.EncWriteMapElemKey()")
   1498 		if predeclared {
   1499 			switch tkind {
   1500 			case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32:
   1501 				x.linef("r.EncodeInt(int64(%sv%s))", genTempVarPfx, i)
   1502 			case reflect.Int64:
   1503 				x.linef("r.EncodeInt(%sv%s)", genTempVarPfx, i)
   1504 			case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uintptr:
   1505 				x.linef("r.EncodeUint(%sv%s)", genTempVarPfx, i)
   1506 			case reflect.Uint64:
   1507 				x.linef("r.EncodeUint(uint64(%sv%s))", genTempVarPfx, i)
   1508 			case reflect.Float32:
   1509 				x.linef("r.EncodeFloat32(float32(%sv%s))", genTempVarPfx, i)
   1510 			case reflect.Float64:
   1511 				x.linef("r.EncodeFloat64(%sv%s)", genTempVarPfx, i)
   1512 			case reflect.String:
   1513 				x.linef("r.EncodeString(%sv%s)", genTempVarPfx, i)
   1514 			}
   1515 		} else {
   1516 			x.linef("%svv%s = %s(%sv%s)", genTempVarPfx, i, x.genTypeName(tkey), genTempVarPfx, i)
   1517 			x.linef("z.EncEncodeNumBoolStrKindGivenAddr(&%svv%s, %sencfn%s)", genTempVarPfx, i, genTempVarPfx, i)
   1518 		}
   1519 		x.linef("  z.EncWriteMapElemValue()")
   1520 		vname := genTempVarPfx + "e" + i
   1521 		if predeclared {
   1522 			x.linef("%s := %s[%s(%sv%s)]", vname, varname, x.genTypeName(tkey), genTempVarPfx, i)
   1523 		} else {
   1524 			x.linef("%s := %s[%svv%s]", vname, varname, genTempVarPfx, i)
   1525 		}
   1526 		x.encVar(vname, t.Elem())
   1527 		x.linef("}")
   1528 
   1529 		x.line("z.EncWriteMapEnd()")
   1530 
   1531 	}
   1532 
   1533 	// if canonSortKind != reflect.Invalid && !tikey.flagMarshalInterface {
   1534 	// 	if predeclared {
   1535 	// 		fnCanonNumBoolStrKind()
   1536 	// 	} else {
   1537 	// 		// handle if an extension
   1538 	// 		x.linef("if z.Extension(%s(%s)) != nil { z.EncEncodeMapNonNil(%s) } else {",
   1539 	// 			x.genTypeName(tkey), x.genZeroValueR(tkey), varname)
   1540 	// 		fnCanonNumBoolStrKind()
   1541 	// 		x.line("}")
   1542 	// 	}
   1543 	// } else {
   1544 	// 	x.linef("z.EncEncodeMapNonNil(%s)", varname)
   1545 	// }
   1546 
   1547 	if canonSortKind != reflect.Invalid {
   1548 		fnCanonNumBoolStrKind()
   1549 	} else {
   1550 		x.linef("z.EncEncodeMapNonNil(%s)", varname)
   1551 	}
   1552 
   1553 	x.line("} else {")
   1554 
   1555 	x.linef("z.EncWriteMapStart(len(%s))", varname)
   1556 	x.linef("for %sk%s, %sv%s := range %s {", genTempVarPfx, i, genTempVarPfx, i, varname)
   1557 	x.linef("z.EncWriteMapElemKey()")
   1558 	x.encVar(genTempVarPfx+"k"+i, t.Key())
   1559 	x.line("z.EncWriteMapElemValue()")
   1560 	x.encVar(genTempVarPfx+"v"+i, t.Elem())
   1561 	x.line("}")
   1562 	x.line("z.EncWriteMapEnd()")
   1563 
   1564 	x.line("}")
   1565 }
   1566 
   1567 func (x *genRunner) decVarInitPtr(varname, nilvar string, t reflect.Type, si *structFieldInfo,
   1568 	newbuf, nilbuf *genBuf) (varname3 string, t2 reflect.StructField) {
   1569 	//we must accommodate anonymous fields, where the embedded field is a nil pointer in the value.
   1570 	// t2 = t.FieldByIndex(si.is)
   1571 	varname3 = varname
   1572 	t2typ := t
   1573 	t2kind := t2typ.Kind()
   1574 	var nilbufed bool
   1575 	if si != nil {
   1576 		fullpath := si.path.fullpath()
   1577 		for _, path := range fullpath {
   1578 			// only one-level pointers can be seen in a type
   1579 			if t2typ.Kind() == reflect.Ptr {
   1580 				t2typ = t2typ.Elem()
   1581 			}
   1582 			t2 = t2typ.Field(int(path.index))
   1583 			t2typ = t2.Type
   1584 			varname3 = varname3 + "." + t2.Name
   1585 			t2kind = t2typ.Kind()
   1586 			if t2kind != reflect.Ptr {
   1587 				continue
   1588 			}
   1589 			if newbuf != nil {
   1590 				if len(newbuf.buf) > 0 {
   1591 					newbuf.s("\n")
   1592 				}
   1593 				newbuf.f("if %s == nil { %s = new(%s) }", varname3, varname3, x.genTypeName(t2typ.Elem()))
   1594 			}
   1595 			if nilbuf != nil {
   1596 				if !nilbufed {
   1597 					nilbuf.s("if ").s(varname3).s(" != nil")
   1598 					nilbufed = true
   1599 				} else {
   1600 					nilbuf.s(" && ").s(varname3).s(" != nil")
   1601 				}
   1602 			}
   1603 		}
   1604 	}
   1605 	if nilbuf != nil {
   1606 		if nilbufed {
   1607 			nilbuf.s(" { ").s("// remove the if-true\n")
   1608 		}
   1609 		if nilvar != "" {
   1610 			nilbuf.s(nilvar).s(" = true")
   1611 		} else if tk := t2typ.Kind(); tk == reflect.Ptr {
   1612 			if strings.IndexByte(varname3, '.') != -1 || strings.IndexByte(varname3, '[') != -1 {
   1613 				nilbuf.s(varname3).s(" = nil")
   1614 			} else {
   1615 				nilbuf.s("*").s(varname3).s(" = ").s(x.genZeroValueR(t2typ.Elem()))
   1616 			}
   1617 		} else {
   1618 			nilbuf.s(varname3).s(" = ").s(x.genZeroValueR(t2typ))
   1619 		}
   1620 		if nilbufed {
   1621 			nilbuf.s("}")
   1622 		}
   1623 	}
   1624 	return
   1625 }
   1626 
   1627 // decVar takes a variable called varname, of type t
   1628 func (x *genRunner) decVarMain(varname, rand string, t reflect.Type, checkNotNil bool) {
   1629 	// We only encode as nil if a nillable value.
   1630 	// This removes some of the wasted checks for TryDecodeAsNil.
   1631 	// We need to think about this more, to see what happens if omitempty, etc
   1632 	// cause a nil value to be stored when something is expected.
   1633 	// This could happen when decoding from a struct encoded as an array.
   1634 	// For that, decVar should be called with canNil=true, to force true as its value.
   1635 	var varname2 string
   1636 	if t.Kind() != reflect.Ptr {
   1637 		if t.PkgPath() != "" || !x.decTryAssignPrimitive(varname, t, false) {
   1638 			x.dec(varname, t, false)
   1639 		}
   1640 	} else {
   1641 		if checkNotNil {
   1642 			x.linef("if %s == nil { %s = new(%s) }", varname, varname, x.genTypeName(t.Elem()))
   1643 		}
   1644 		// Ensure we set underlying ptr to a non-nil value (so we can deref to it later).
   1645 		// There's a chance of a **T in here which is nil.
   1646 		var ptrPfx string
   1647 		for t = t.Elem(); t.Kind() == reflect.Ptr; t = t.Elem() {
   1648 			ptrPfx += "*"
   1649 			if checkNotNil {
   1650 				x.linef("if %s%s == nil { %s%s = new(%s)}", ptrPfx, varname, ptrPfx, varname, x.genTypeName(t))
   1651 			}
   1652 		}
   1653 		// Should we create temp var if a slice/map indexing? No. dec(...) can now handle it.
   1654 
   1655 		if ptrPfx == "" {
   1656 			x.dec(varname, t, true)
   1657 		} else {
   1658 			varname2 = genTempVarPfx + "z" + rand
   1659 			x.line(varname2 + " := " + ptrPfx + varname)
   1660 			x.dec(varname2, t, true)
   1661 		}
   1662 	}
   1663 }
   1664 
   1665 // decVar takes a variable called varname, of type t
   1666 func (x *genRunner) decVar(varname, nilvar string, t reflect.Type, canBeNil, checkNotNil bool) {
   1667 
   1668 	// We only encode as nil if a nillable value.
   1669 	// This removes some of the wasted checks for TryDecodeAsNil.
   1670 	// We need to think about this more, to see what happens if omitempty, etc
   1671 	// cause a nil value to be stored when something is expected.
   1672 	// This could happen when decoding from a struct encoded as an array.
   1673 	// For that, decVar should be called with canNil=true, to force true as its value.
   1674 
   1675 	i := x.varsfx()
   1676 	if t.Kind() == reflect.Ptr {
   1677 		var buf genBuf
   1678 		x.decVarInitPtr(varname, nilvar, t, nil, nil, &buf)
   1679 		x.linef("if r.TryNil() { %s } else {", buf.buf)
   1680 		x.decVarMain(varname, i, t, checkNotNil)
   1681 		x.line("} ")
   1682 	} else {
   1683 		x.decVarMain(varname, i, t, checkNotNil)
   1684 	}
   1685 }
   1686 
   1687 // dec will decode a variable (varname) of type t or ptrTo(t) if isptr==true.
   1688 func (x *genRunner) dec(varname string, t reflect.Type, isptr bool) {
   1689 	// assumptions:
   1690 	//   - the varname is to a pointer already. No need to take address of it
   1691 	//   - t is always a baseType T (not a *T, etc).
   1692 	rtid := rt2id(t)
   1693 	ti2 := x.ti.get(rtid, t)
   1694 
   1695 	// check if
   1696 	//   - type is time.Time, Raw, RawExt
   1697 	//   - the type implements (Text|JSON|Binary)(Unm|M)arshal
   1698 
   1699 	mi := x.varsfx()
   1700 
   1701 	var hasIf genIfClause
   1702 	defer hasIf.end(x)
   1703 
   1704 	var ptrPfx, addrPfx string
   1705 	if isptr {
   1706 		ptrPfx = "*"
   1707 	} else {
   1708 		addrPfx = "&"
   1709 	}
   1710 	if t == timeTyp {
   1711 		x.linef("%s z.DecBasicHandle().TimeBuiltin() { %s%v = r.DecodeTime()", hasIf.c(false), ptrPfx, varname)
   1712 		// return
   1713 	}
   1714 	if t == rawTyp {
   1715 		x.linef("%s %s%v = z.DecRaw()", hasIf.c(true), ptrPfx, varname)
   1716 		return
   1717 	}
   1718 
   1719 	if t == rawExtTyp {
   1720 		x.linef("%s r.DecodeExt(%s%v, 0, nil)", hasIf.c(true), addrPfx, varname)
   1721 		return
   1722 	}
   1723 
   1724 	// only check for extensions if extensions are configured,
   1725 	// and the type is named, and has a packagePath,
   1726 	// and this is not the CodecEncodeSelf or CodecDecodeSelf method (i.e. it is not a Selfer)
   1727 	// xdebugf("genRunner.dec: varname: %v, t: %v, genImportPath: %v, t.Name: %v", varname, t, genImportPath(t), t.Name())
   1728 	if !x.nx && varname != genTopLevelVarName && t != genStringDecAsBytesTyp &&
   1729 		t != genStringDecZCTyp && genImportPath(t) != "" && t.Name() != "" {
   1730 		// first check if extensions are configued, before doing the interface conversion
   1731 		yy := fmt.Sprintf("%sxt%s", genTempVarPfx, mi)
   1732 		x.linef("%s %s := z.Extension(%s); %s != nil { z.DecExtension(%s%s, %s) ", hasIf.c(false), yy, varname, yy, addrPfx, varname, yy)
   1733 	}
   1734 
   1735 	if x.checkForSelfer(t, varname) {
   1736 		if ti2.flagSelfer {
   1737 			x.linef("%s %s.CodecDecodeSelf(d)", hasIf.c(true), varname)
   1738 			return
   1739 		}
   1740 		if ti2.flagSelferPtr {
   1741 			x.linef("%s %s.CodecDecodeSelf(d)", hasIf.c(true), varname)
   1742 			return
   1743 		}
   1744 		if _, ok := x.td[rtid]; ok {
   1745 			x.linef("%s %s.CodecDecodeSelf(d)", hasIf.c(true), varname)
   1746 			return
   1747 		}
   1748 	}
   1749 
   1750 	inlist := false
   1751 	for _, t0 := range x.t {
   1752 		if t == t0 {
   1753 			inlist = true
   1754 			if x.checkForSelfer(t, varname) {
   1755 				x.linef("%s %s.CodecDecodeSelf(d)", hasIf.c(true), varname)
   1756 				return
   1757 			}
   1758 			break
   1759 		}
   1760 	}
   1761 
   1762 	var rtidAdded bool
   1763 	if t == x.tc {
   1764 		x.td[rtid] = true
   1765 		rtidAdded = true
   1766 	}
   1767 
   1768 	if ti2.flagBinaryUnmarshaler {
   1769 		x.linef("%s z.DecBinary() { z.DecBinaryUnmarshal(%s%v) ", hasIf.c(false), ptrPfx, varname)
   1770 	} else if ti2.flagBinaryUnmarshalerPtr {
   1771 		x.linef("%s z.DecBinary() { z.DecBinaryUnmarshal(%s%v) ", hasIf.c(false), addrPfx, varname)
   1772 	}
   1773 	if ti2.flagJsonUnmarshaler {
   1774 		x.linef("%s !z.DecBinary() && z.IsJSONHandle() { z.DecJSONUnmarshal(%s%v)", hasIf.c(false), ptrPfx, varname)
   1775 	} else if ti2.flagJsonUnmarshalerPtr {
   1776 		x.linef("%s !z.DecBinary() && z.IsJSONHandle() { z.DecJSONUnmarshal(%s%v)", hasIf.c(false), addrPfx, varname)
   1777 	} else if ti2.flagTextUnmarshaler {
   1778 		x.linef("%s !z.DecBinary() { z.DecTextUnmarshal(%s%v)", hasIf.c(false), ptrPfx, varname)
   1779 	} else if ti2.flagTextUnmarshalerPtr {
   1780 		x.linef("%s !z.DecBinary() { z.DecTextUnmarshal(%s%v)", hasIf.c(false), addrPfx, varname)
   1781 	}
   1782 
   1783 	x.lineIf(hasIf.c(true))
   1784 
   1785 	if x.decTryAssignPrimitive(varname, t, isptr) {
   1786 		return
   1787 	}
   1788 
   1789 	switch t.Kind() {
   1790 	case reflect.Chan:
   1791 		x.xtraSM(varname, t, ti2, false, isptr)
   1792 	case reflect.Array:
   1793 		_, rtidu := genFastpathUnderlying(t, rtid, ti2)
   1794 		if fastpathAvIndex(rtidu) != -1 {
   1795 			g := x.newFastpathGenV(ti2.key)
   1796 			x.linef("z.F.%sN((%s)(%s[:]), d)", g.MethodNamePfx("Dec", false), x.genTypeName(ti2.key), varname)
   1797 		} else {
   1798 			x.xtraSM(varname, t, ti2, false, isptr)
   1799 		}
   1800 	case reflect.Slice:
   1801 		// if a []byte, call dedicated function
   1802 		// if a known fastpath slice, call dedicated function
   1803 		// else write encode function in-line.
   1804 		// - if elements are primitives or Selfers, call dedicated function on each member.
   1805 		// - else call Encoder.encode(XXX) on it.
   1806 
   1807 		if rtid == uint8SliceTypId {
   1808 			x.linef("%s%s = z.DecodeBytesInto(%s(%s[]byte)(%s))", ptrPfx, varname, ptrPfx, ptrPfx, varname)
   1809 		} else {
   1810 			tu, rtidu := genFastpathUnderlying(t, rtid, ti2)
   1811 			if fastpathAvIndex(rtidu) != -1 {
   1812 				g := x.newFastpathGenV(tu)
   1813 				if rtid == rtidu {
   1814 					x.linef("z.F.%sX(%s%s, d)", g.MethodNamePfx("Dec", false), addrPfx, varname)
   1815 				} else {
   1816 					x.linef("z.F.%sX((*%s)(%s%s), d)", g.MethodNamePfx("Dec", false), x.genTypeName(tu), addrPfx, varname)
   1817 				}
   1818 			} else {
   1819 				x.xtraSM(varname, t, ti2, false, isptr)
   1820 				// x.decListFallback(varname, rtid, false, t)
   1821 			}
   1822 		}
   1823 	case reflect.Map:
   1824 		// if a known fastpath map, call dedicated function
   1825 		// else write encode function in-line.
   1826 		// - if elements are primitives or Selfers, call dedicated function on each member.
   1827 		// - else call Encoder.encode(XXX) on it.
   1828 
   1829 		tu, rtidu := genFastpathUnderlying(t, rtid, ti2)
   1830 		if fastpathAvIndex(rtidu) != -1 {
   1831 			g := x.newFastpathGenV(tu)
   1832 			if rtid == rtidu {
   1833 				x.linef("z.F.%sX(%s%s, d)", g.MethodNamePfx("Dec", false), addrPfx, varname)
   1834 			} else {
   1835 				x.linef("z.F.%sX((*%s)(%s%s), d)", g.MethodNamePfx("Dec", false), x.genTypeName(tu), addrPfx, varname)
   1836 			}
   1837 		} else {
   1838 			x.xtraSM(varname, t, ti2, false, isptr)
   1839 		}
   1840 	case reflect.Struct:
   1841 		if inlist {
   1842 			// no need to create temp variable if isptr, or x.F or x[F]
   1843 			if isptr || strings.IndexByte(varname, '.') != -1 || strings.IndexByte(varname, '[') != -1 {
   1844 				x.decStruct(varname, rtid, t)
   1845 			} else {
   1846 				varname2 := genTempVarPfx + "j" + mi
   1847 				x.line(varname2 + " := &" + varname)
   1848 				x.decStruct(varname2, rtid, t)
   1849 			}
   1850 		} else {
   1851 			// delete(x.td, rtid)
   1852 			x.line("z.DecFallback(" + addrPfx + varname + ", false)")
   1853 		}
   1854 	default:
   1855 		if rtidAdded {
   1856 			delete(x.te, rtid)
   1857 		}
   1858 		x.line("z.DecFallback(" + addrPfx + varname + ", true)")
   1859 	}
   1860 }
   1861 
   1862 func (x *genRunner) decTryAssignPrimitive(varname string, t reflect.Type, isptr bool) (done bool) {
   1863 	// This should only be used for exact primitives (ie un-named types).
   1864 	// Named types may be implementations of Selfer, Unmarshaler, etc.
   1865 	// They should be handled by dec(...)
   1866 
   1867 	var ptr string
   1868 	if isptr {
   1869 		ptr = "*"
   1870 	}
   1871 	switch t.Kind() {
   1872 	case reflect.Int:
   1873 		x.linef("%s%s = (%s)(z.C.IntV(r.DecodeInt64(), codecSelferBitsize%s))", ptr, varname, x.genTypeName(t), x.xs)
   1874 	case reflect.Int8:
   1875 		x.linef("%s%s = (%s)(z.C.IntV(r.DecodeInt64(), 8))", ptr, varname, x.genTypeName(t))
   1876 	case reflect.Int16:
   1877 		x.linef("%s%s = (%s)(z.C.IntV(r.DecodeInt64(), 16))", ptr, varname, x.genTypeName(t))
   1878 	case reflect.Int32:
   1879 		x.linef("%s%s = (%s)(z.C.IntV(r.DecodeInt64(), 32))", ptr, varname, x.genTypeName(t))
   1880 	case reflect.Int64:
   1881 		x.linef("%s%s = (%s)(r.DecodeInt64())", ptr, varname, x.genTypeName(t))
   1882 
   1883 	case reflect.Uint:
   1884 		x.linef("%s%s = (%s)(z.C.UintV(r.DecodeUint64(), codecSelferBitsize%s))", ptr, varname, x.genTypeName(t), x.xs)
   1885 	case reflect.Uint8:
   1886 		x.linef("%s%s = (%s)(z.C.UintV(r.DecodeUint64(), 8))", ptr, varname, x.genTypeName(t))
   1887 	case reflect.Uint16:
   1888 		x.linef("%s%s = (%s)(z.C.UintV(r.DecodeUint64(), 16))", ptr, varname, x.genTypeName(t))
   1889 	case reflect.Uint32:
   1890 		x.linef("%s%s = (%s)(z.C.UintV(r.DecodeUint64(), 32))", ptr, varname, x.genTypeName(t))
   1891 	case reflect.Uint64:
   1892 		x.linef("%s%s = (%s)(r.DecodeUint64())", ptr, varname, x.genTypeName(t))
   1893 	case reflect.Uintptr:
   1894 		x.linef("%s%s = (%s)(z.C.UintV(r.DecodeUint64(), codecSelferBitsize%s))", ptr, varname, x.genTypeName(t), x.xs)
   1895 
   1896 	case reflect.Float32:
   1897 		x.linef("%s%s = (%s)(z.DecDecodeFloat32())", ptr, varname, x.genTypeName(t))
   1898 	case reflect.Float64:
   1899 		x.linef("%s%s = (%s)(r.DecodeFloat64())", ptr, varname, x.genTypeName(t))
   1900 
   1901 	case reflect.Complex64:
   1902 		x.linef("%s%s = (%s)(complex(z.DecDecodeFloat32(), 0))", ptr, varname, x.genTypeName(t))
   1903 	case reflect.Complex128:
   1904 		x.linef("%s%s = (%s)(complex(r.DecodeFloat64(), 0))", ptr, varname, x.genTypeName(t))
   1905 
   1906 	case reflect.Bool:
   1907 		x.linef("%s%s = (%s)(r.DecodeBool())", ptr, varname, x.genTypeName(t))
   1908 	case reflect.String:
   1909 		if t == genStringDecAsBytesTyp {
   1910 			x.linef("%s%s = r.DecodeStringAsBytes()", ptr, varname)
   1911 		} else if t == genStringDecZCTyp {
   1912 			x.linef("%s%s = (string)(z.DecStringZC(r.DecodeStringAsBytes()))", ptr, varname)
   1913 		} else {
   1914 			x.linef("%s%s = (%s)(z.DecStringZC(r.DecodeStringAsBytes()))", ptr, varname, x.genTypeName(t))
   1915 		}
   1916 	default:
   1917 		return false
   1918 	}
   1919 	return true
   1920 }
   1921 
   1922 func (x *genRunner) decListFallback(varname string, rtid uintptr, t reflect.Type) {
   1923 	if t.AssignableTo(uint8SliceTyp) {
   1924 		x.line("*" + varname + " = z.DecodeBytesInto(*((*[]byte)(" + varname + ")))")
   1925 		return
   1926 	}
   1927 	if t.Kind() == reflect.Array && t.Elem().Kind() == reflect.Uint8 {
   1928 		x.linef("r.DecodeBytes( ((*[%d]byte)(%s))[:])", t.Len(), varname)
   1929 		return
   1930 	}
   1931 	type tstruc struct {
   1932 		TempVar   string
   1933 		Sfx       string
   1934 		Rand      string
   1935 		Varname   string
   1936 		CTyp      string
   1937 		Typ       string
   1938 		Immutable bool
   1939 		Size      int
   1940 	}
   1941 	telem := t.Elem()
   1942 	ts := tstruc{genTempVarPfx, x.xs, x.varsfx(), varname, x.genTypeName(t), x.genTypeName(telem), genIsImmutable(telem), int(telem.Size())}
   1943 
   1944 	funcs := make(template.FuncMap)
   1945 
   1946 	funcs["decLineVar"] = func(varname string) string {
   1947 		x.decVar(varname, "", telem, false, true)
   1948 		return ""
   1949 	}
   1950 	funcs["var"] = func(s string) string {
   1951 		return ts.TempVar + s + ts.Rand
   1952 	}
   1953 	funcs["xs"] = func() string {
   1954 		return ts.Sfx
   1955 	}
   1956 	funcs["zero"] = func() string {
   1957 		return x.genZeroValueR(telem)
   1958 	}
   1959 	funcs["isArray"] = func() bool {
   1960 		return t.Kind() == reflect.Array
   1961 	}
   1962 	funcs["isSlice"] = func() bool {
   1963 		return t.Kind() == reflect.Slice
   1964 	}
   1965 	funcs["isChan"] = func() bool {
   1966 		return t.Kind() == reflect.Chan
   1967 	}
   1968 	tm, err := template.New("").Funcs(funcs).Parse(genDecListTmpl)
   1969 	genCheckErr(err)
   1970 	genCheckErr(tm.Execute(x.w, &ts))
   1971 }
   1972 
   1973 func (x *genRunner) decMapFallback(varname string, rtid uintptr, t reflect.Type) {
   1974 	type tstruc struct {
   1975 		TempVar string
   1976 		Sfx     string
   1977 		Rand    string
   1978 		Varname string
   1979 		KTyp    string
   1980 		Typ     string
   1981 		Size    int
   1982 	}
   1983 	telem := t.Elem()
   1984 	tkey := t.Key()
   1985 	ts := tstruc{
   1986 		genTempVarPfx, x.xs, x.varsfx(), varname, x.genTypeName(tkey),
   1987 		x.genTypeName(telem), int(telem.Size() + tkey.Size()),
   1988 	}
   1989 
   1990 	funcs := make(template.FuncMap)
   1991 	funcs["decElemZero"] = func() string {
   1992 		return x.genZeroValueR(telem)
   1993 	}
   1994 	funcs["decElemKindImmutable"] = func() bool {
   1995 		return genIsImmutable(telem)
   1996 	}
   1997 	funcs["decElemKindPtr"] = func() bool {
   1998 		return telem.Kind() == reflect.Ptr
   1999 	}
   2000 	funcs["decElemKindIntf"] = func() bool {
   2001 		return telem.Kind() == reflect.Interface
   2002 	}
   2003 	funcs["decLineVarKStrBytes"] = func(varname string) string {
   2004 		x.decVar(varname, "", genStringDecAsBytesTyp, false, true)
   2005 		return ""
   2006 	}
   2007 	funcs["decLineVarKStrZC"] = func(varname string) string {
   2008 		x.decVar(varname, "", genStringDecZCTyp, false, true)
   2009 		return ""
   2010 	}
   2011 	funcs["decLineVarK"] = func(varname string) string {
   2012 		x.decVar(varname, "", tkey, false, true)
   2013 		return ""
   2014 	}
   2015 	funcs["decLineVar"] = func(varname, decodedNilVarname string) string {
   2016 		x.decVar(varname, decodedNilVarname, telem, false, true)
   2017 		return ""
   2018 	}
   2019 	funcs["var"] = func(s string) string {
   2020 		return ts.TempVar + s + ts.Rand
   2021 	}
   2022 	funcs["xs"] = func() string {
   2023 		return ts.Sfx
   2024 	}
   2025 
   2026 	tm, err := template.New("").Funcs(funcs).Parse(genDecMapTmpl)
   2027 	genCheckErr(err)
   2028 	genCheckErr(tm.Execute(x.w, &ts))
   2029 }
   2030 
   2031 func (x *genRunner) decStructMapSwitch(kName string, varname string, rtid uintptr, t reflect.Type) {
   2032 	ti := x.ti.get(rtid, t)
   2033 	tisfi := ti.sfi.source() // always use sequence from file. decStruct expects same thing.
   2034 	x.line("switch string(" + kName + ") {")
   2035 	var newbuf, nilbuf genBuf
   2036 	for _, si := range tisfi {
   2037 		x.line("case \"" + si.encName + "\":")
   2038 		newbuf.reset()
   2039 		nilbuf.reset()
   2040 		varname3, t2 := x.decVarInitPtr(varname, "", t, si, &newbuf, &nilbuf)
   2041 		if len(newbuf.buf) > 0 {
   2042 			x.linef("if r.TryNil() { %s } else { %s", nilbuf.buf, newbuf.buf)
   2043 		}
   2044 		x.decVarMain(varname3, x.varsfx(), t2.Type, false)
   2045 		if len(newbuf.buf) > 0 {
   2046 			x.line("}")
   2047 		}
   2048 	}
   2049 	x.line("default:")
   2050 	// pass the slice here, so that the string will not escape, and maybe save allocation
   2051 	x.linef("z.DecStructFieldNotFound(-1, string(%s))", kName)
   2052 	x.linef("} // end switch %s", kName)
   2053 }
   2054 
   2055 func (x *genRunner) decStructMap(varname, lenvarname string, rtid uintptr, t reflect.Type) {
   2056 	tpfx := genTempVarPfx
   2057 	ti := x.ti.get(rtid, t)
   2058 	i := x.varsfx()
   2059 	kName := tpfx + "s" + i
   2060 
   2061 	x.linef("var %shl%s bool = %s >= 0", tpfx, i, lenvarname) // has length
   2062 	x.linef("for %sj%s := 0; z.DecContainerNext(%sj%s, %s, %shl%s); %sj%s++ {",
   2063 		tpfx, i, tpfx, i, lenvarname, tpfx, i, tpfx, i)
   2064 
   2065 	x.line("z.DecReadMapElemKey()")
   2066 
   2067 	// emulate decstructfieldkey
   2068 	switch ti.keyType {
   2069 	case valueTypeInt:
   2070 		x.linef("%s := strconv.AppendInt(z.DecScratchArrayBuffer()[:0], r.DecodeInt64(), 10)", kName)
   2071 	case valueTypeUint:
   2072 		x.linef("%s := strconv.AppendUint(z.DecScratchArrayBuffer()[:0], r.DecodeUint64(), 10)", kName)
   2073 	case valueTypeFloat:
   2074 		x.linef("%s := strconv.AppendFloat(z.DecScratchArrayBuffer()[:0], r.DecodeFloat64(), 'f', -1, 64)", kName)
   2075 	default: // string
   2076 		x.linef("%s := r.DecodeStringAsBytes()", kName)
   2077 	}
   2078 
   2079 	x.line("z.DecReadMapElemValue()")
   2080 	x.decStructMapSwitch(kName, varname, rtid, t)
   2081 
   2082 	x.line("} // end for " + tpfx + "j" + i)
   2083 }
   2084 
   2085 func (x *genRunner) decStructArray(varname, lenvarname, breakString string, rtid uintptr, t reflect.Type) {
   2086 	tpfx := genTempVarPfx
   2087 	i := x.varsfx()
   2088 	ti := x.ti.get(rtid, t)
   2089 	tisfi := ti.sfi.source() // always use sequence from file. decStruct expects same thing.
   2090 	x.linef("var %sj%s int", tpfx, i)
   2091 	x.linef("var %sb%s bool", tpfx, i)                        // break
   2092 	x.linef("var %shl%s bool = %s >= 0", tpfx, i, lenvarname) // has length
   2093 	var newbuf, nilbuf genBuf
   2094 	for _, si := range tisfi {
   2095 		x.linef("%sb%s = !z.DecContainerNext(%sj%s, %s, %shl%s)", tpfx, i, tpfx, i, lenvarname, tpfx, i)
   2096 		x.linef("if %sb%s { z.DecReadArrayEnd(); %s }", tpfx, i, breakString)
   2097 		x.line("z.DecReadArrayElem()")
   2098 		newbuf.reset()
   2099 		nilbuf.reset()
   2100 		varname3, t2 := x.decVarInitPtr(varname, "", t, si, &newbuf, &nilbuf)
   2101 		if len(newbuf.buf) > 0 {
   2102 			x.linef("if r.TryNil() { %s } else { %s", nilbuf.buf, newbuf.buf)
   2103 		}
   2104 		x.decVarMain(varname3, x.varsfx(), t2.Type, false)
   2105 		if len(newbuf.buf) > 0 {
   2106 			x.line("}")
   2107 		}
   2108 		x.linef("%sj%s++", tpfx, i)
   2109 	}
   2110 	// read remaining values and throw away.
   2111 	x.linef("for ; z.DecContainerNext(%sj%s, %s, %shl%s); %sj%s++ {",
   2112 		tpfx, i, lenvarname, tpfx, i, tpfx, i)
   2113 	x.line("z.DecReadArrayElem()")
   2114 	x.linef(`z.DecStructFieldNotFound(%sj%s - 1, "")`, tpfx, i)
   2115 	x.line("}")
   2116 }
   2117 
   2118 func (x *genRunner) decStruct(varname string, rtid uintptr, t reflect.Type) {
   2119 	// varname MUST be a ptr, or a struct field or a slice element.
   2120 	i := x.varsfx()
   2121 	x.linef("%sct%s := r.ContainerType()", genTempVarPfx, i)
   2122 	x.linef("if %sct%s == codecSelferValueTypeNil%s {", genTempVarPfx, i, x.xs)
   2123 	x.linef("*(%s) = %s{}", varname, x.genTypeName(t))
   2124 	x.linef("} else if %sct%s == codecSelferValueTypeMap%s {", genTempVarPfx, i, x.xs)
   2125 	x.line(genTempVarPfx + "l" + i + " := z.DecReadMapStart()")
   2126 	x.linef("if %sl%s == 0 {", genTempVarPfx, i)
   2127 
   2128 	x.line("} else { ")
   2129 	x.linef("%s.codecDecodeSelfFromMap(%sl%s, d)", varname, genTempVarPfx, i)
   2130 
   2131 	x.line("}")
   2132 	x.line("z.DecReadMapEnd()")
   2133 
   2134 	// else if container is array
   2135 	x.linef("} else if %sct%s == codecSelferValueTypeArray%s {", genTempVarPfx, i, x.xs)
   2136 	x.line(genTempVarPfx + "l" + i + " := z.DecReadArrayStart()")
   2137 	x.linef("if %sl%s != 0 {", genTempVarPfx, i)
   2138 	x.linef("%s.codecDecodeSelfFromArray(%sl%s, d)", varname, genTempVarPfx, i)
   2139 	x.line("}")
   2140 	x.line("z.DecReadArrayEnd()")
   2141 	// else panic
   2142 	x.line("} else { ")
   2143 	x.line("panic(errCodecSelferOnlyMapOrArrayEncodeToStruct" + x.xs + ")")
   2144 	x.line("} ")
   2145 }
   2146 
   2147 // --------
   2148 
   2149 type fastpathGenV struct {
   2150 	// fastpathGenV is either a primitive (Primitive != "") or a map (MapKey != "") or a slice
   2151 	MapKey      string
   2152 	Elem        string
   2153 	Primitive   string
   2154 	Size        int
   2155 	NoCanonical bool
   2156 }
   2157 
   2158 func (x *genRunner) newFastpathGenV(t reflect.Type) (v fastpathGenV) {
   2159 	v.NoCanonical = !genFastpathCanonical
   2160 	switch t.Kind() {
   2161 	case reflect.Slice, reflect.Array:
   2162 		te := t.Elem()
   2163 		v.Elem = x.genTypeName(te)
   2164 		v.Size = int(te.Size())
   2165 	case reflect.Map:
   2166 		te := t.Elem()
   2167 		tk := t.Key()
   2168 		v.Elem = x.genTypeName(te)
   2169 		v.MapKey = x.genTypeName(tk)
   2170 		v.Size = int(te.Size() + tk.Size())
   2171 	default:
   2172 		halt.onerror(errGenUnexpectedTypeFastpath)
   2173 	}
   2174 	return
   2175 }
   2176 
   2177 func (x *fastpathGenV) MethodNamePfx(prefix string, prim bool) string {
   2178 	var name []byte
   2179 	if prefix != "" {
   2180 		name = append(name, prefix...)
   2181 	}
   2182 	if prim {
   2183 		name = append(name, genTitleCaseName(x.Primitive)...)
   2184 	} else {
   2185 		if x.MapKey == "" {
   2186 			name = append(name, "Slice"...)
   2187 		} else {
   2188 			name = append(name, "Map"...)
   2189 			name = append(name, genTitleCaseName(x.MapKey)...)
   2190 		}
   2191 		name = append(name, genTitleCaseName(x.Elem)...)
   2192 	}
   2193 	return string(name)
   2194 }
   2195 
   2196 // genImportPath returns import path of a non-predeclared named typed, or an empty string otherwise.
   2197 //
   2198 // This handles the misbehaviour that occurs when 1.5-style vendoring is enabled,
   2199 // where PkgPath returns the full path, including the vendoring pre-fix that should have been stripped.
   2200 // We strip it here.
   2201 func genImportPath(t reflect.Type) (s string) {
   2202 	s = t.PkgPath()
   2203 	if genCheckVendor {
   2204 		// HACK: always handle vendoring. It should be typically on in go 1.6, 1.7
   2205 		s = genStripVendor(s)
   2206 	}
   2207 	return
   2208 }
   2209 
   2210 // A go identifier is (letter|_)[letter|number|_]*
   2211 func genGoIdentifier(s string, checkFirstChar bool) string {
   2212 	b := make([]byte, 0, len(s))
   2213 	t := make([]byte, 4)
   2214 	var n int
   2215 	for i, r := range s {
   2216 		if checkFirstChar && i == 0 && !unicode.IsLetter(r) {
   2217 			b = append(b, '_')
   2218 		}
   2219 		// r must be unicode_letter, unicode_digit or _
   2220 		if unicode.IsLetter(r) || unicode.IsDigit(r) {
   2221 			n = utf8.EncodeRune(t, r)
   2222 			b = append(b, t[:n]...)
   2223 		} else {
   2224 			b = append(b, '_')
   2225 		}
   2226 	}
   2227 	return string(b)
   2228 }
   2229 
   2230 func genNonPtr(t reflect.Type) reflect.Type {
   2231 	for t.Kind() == reflect.Ptr {
   2232 		t = t.Elem()
   2233 	}
   2234 	return t
   2235 }
   2236 
   2237 func genFastpathUnderlying(t reflect.Type, rtid uintptr, ti *typeInfo) (tu reflect.Type, rtidu uintptr) {
   2238 	tu = t
   2239 	rtidu = rtid
   2240 	if ti.flagHasPkgPath {
   2241 		tu = ti.fastpathUnderlying
   2242 		rtidu = rt2id(tu)
   2243 	}
   2244 	return
   2245 }
   2246 
   2247 func genTitleCaseName(s string) string {
   2248 	switch s {
   2249 	case "interface{}", "interface {}":
   2250 		return "Intf"
   2251 	case "[]byte", "[]uint8", "bytes":
   2252 		return "Bytes"
   2253 	default:
   2254 		return strings.ToUpper(s[0:1]) + s[1:]
   2255 	}
   2256 }
   2257 
   2258 func genMethodNameT(t reflect.Type, tRef reflect.Type) (n string) {
   2259 	var ptrPfx string
   2260 	for t.Kind() == reflect.Ptr {
   2261 		ptrPfx += "Ptrto"
   2262 		t = t.Elem()
   2263 	}
   2264 	tstr := t.String()
   2265 	if tn := t.Name(); tn != "" {
   2266 		if tRef != nil && genImportPath(t) == genImportPath(tRef) {
   2267 			return ptrPfx + tn
   2268 		} else {
   2269 			if genQNameRegex.MatchString(tstr) {
   2270 				return ptrPfx + strings.Replace(tstr, ".", "_", 1000)
   2271 			} else {
   2272 				return ptrPfx + genCustomTypeName(tstr)
   2273 			}
   2274 		}
   2275 	}
   2276 	switch t.Kind() {
   2277 	case reflect.Map:
   2278 		return ptrPfx + "Map" + genMethodNameT(t.Key(), tRef) + genMethodNameT(t.Elem(), tRef)
   2279 	case reflect.Slice:
   2280 		return ptrPfx + "Slice" + genMethodNameT(t.Elem(), tRef)
   2281 	case reflect.Array:
   2282 		return ptrPfx + "Array" + strconv.FormatInt(int64(t.Len()), 10) + genMethodNameT(t.Elem(), tRef)
   2283 	case reflect.Chan:
   2284 		var cx string
   2285 		switch t.ChanDir() {
   2286 		case reflect.SendDir:
   2287 			cx = "ChanSend"
   2288 		case reflect.RecvDir:
   2289 			cx = "ChanRecv"
   2290 		default:
   2291 			cx = "Chan"
   2292 		}
   2293 		return ptrPfx + cx + genMethodNameT(t.Elem(), tRef)
   2294 	default:
   2295 		if t == intfTyp {
   2296 			return ptrPfx + "Interface"
   2297 		} else {
   2298 			if tRef != nil && genImportPath(t) == genImportPath(tRef) {
   2299 				if t.Name() != "" {
   2300 					return ptrPfx + t.Name()
   2301 				} else {
   2302 					return ptrPfx + genCustomTypeName(tstr)
   2303 				}
   2304 			} else {
   2305 				// best way to get the package name inclusive
   2306 				// return ptrPfx + strings.Replace(tstr, ".", "_", 1000)
   2307 				// return ptrPfx + genBase64enc.EncodeToString([]byte(tstr))
   2308 				if t.Name() != "" && genQNameRegex.MatchString(tstr) {
   2309 					return ptrPfx + strings.Replace(tstr, ".", "_", 1000)
   2310 				} else {
   2311 					return ptrPfx + genCustomTypeName(tstr)
   2312 				}
   2313 			}
   2314 		}
   2315 	}
   2316 }
   2317 
   2318 // genCustomNameForType base64encodes the t.String() value in such a way
   2319 // that it can be used within a function name.
   2320 func genCustomTypeName(tstr string) string {
   2321 	len2 := genBase64enc.EncodedLen(len(tstr))
   2322 	bufx := make([]byte, len2)
   2323 	genBase64enc.Encode(bufx, []byte(tstr))
   2324 	for i := len2 - 1; i >= 0; i-- {
   2325 		if bufx[i] == '=' {
   2326 			len2--
   2327 		} else {
   2328 			break
   2329 		}
   2330 	}
   2331 	return string(bufx[:len2])
   2332 }
   2333 
   2334 func genIsImmutable(t reflect.Type) (v bool) {
   2335 	return scalarBitset.isset(byte(t.Kind()))
   2336 }
   2337 
   2338 type genInternal struct {
   2339 	Version int
   2340 	Values  []fastpathGenV
   2341 	Formats []string
   2342 }
   2343 
   2344 func (x genInternal) FastpathLen() (l int) {
   2345 	for _, v := range x.Values {
   2346 		// if v.Primitive == "" && !(v.MapKey == "" && v.Elem == "uint8") {
   2347 		if v.Primitive == "" {
   2348 			l++
   2349 		}
   2350 	}
   2351 	return
   2352 }
   2353 
   2354 func genInternalZeroValue(s string) string {
   2355 	switch s {
   2356 	case "interface{}", "interface {}":
   2357 		return "nil"
   2358 	case "[]byte", "[]uint8", "bytes":
   2359 		return "nil"
   2360 	case "bool":
   2361 		return "false"
   2362 	case "string":
   2363 		return `""`
   2364 	default:
   2365 		return "0"
   2366 	}
   2367 }
   2368 
   2369 var genInternalNonZeroValueIdx [6]uint64
   2370 var genInternalNonZeroValueStrs = [...][6]string{
   2371 	{`"string-is-an-interface-1"`, "true", `"some-string-1"`, `[]byte("some-string-1")`, "11.1", "111"},
   2372 	{`"string-is-an-interface-2"`, "false", `"some-string-2"`, `[]byte("some-string-2")`, "22.2", "77"},
   2373 	{`"string-is-an-interface-3"`, "true", `"some-string-3"`, `[]byte("some-string-3")`, "33.3e3", "127"},
   2374 }
   2375 
   2376 // Note: last numbers must be in range: 0-127 (as they may be put into a int8, uint8, etc)
   2377 
   2378 func genInternalNonZeroValue(s string) string {
   2379 	var i int
   2380 	switch s {
   2381 	case "interface{}", "interface {}":
   2382 		i = 0
   2383 	case "bool":
   2384 		i = 1
   2385 	case "string":
   2386 		i = 2
   2387 	case "bytes", "[]byte", "[]uint8":
   2388 		i = 3
   2389 	case "float32", "float64", "float", "double", "complex", "complex64", "complex128":
   2390 		i = 4
   2391 	default:
   2392 		i = 5
   2393 	}
   2394 	genInternalNonZeroValueIdx[i]++
   2395 	idx := genInternalNonZeroValueIdx[i]
   2396 	slen := uint64(len(genInternalNonZeroValueStrs))
   2397 	return genInternalNonZeroValueStrs[idx%slen][i] // return string, to remove ambiguity
   2398 }
   2399 
   2400 // Note: used for fastpath only
   2401 func genInternalEncCommandAsString(s string, vname string) string {
   2402 	switch s {
   2403 	case "uint64":
   2404 		return "e.e.EncodeUint(" + vname + ")"
   2405 	case "uint", "uint8", "uint16", "uint32":
   2406 		return "e.e.EncodeUint(uint64(" + vname + "))"
   2407 	case "int64":
   2408 		return "e.e.EncodeInt(" + vname + ")"
   2409 	case "int", "int8", "int16", "int32":
   2410 		return "e.e.EncodeInt(int64(" + vname + "))"
   2411 	case "[]byte", "[]uint8", "bytes":
   2412 		return "e.e.EncodeStringBytesRaw(" + vname + ")"
   2413 	case "string":
   2414 		return "e.e.EncodeString(" + vname + ")"
   2415 	case "float32":
   2416 		return "e.e.EncodeFloat32(" + vname + ")"
   2417 	case "float64":
   2418 		return "e.e.EncodeFloat64(" + vname + ")"
   2419 	case "bool":
   2420 		return "e.e.EncodeBool(" + vname + ")"
   2421 	// case "symbol":
   2422 	// 	return "e.e.EncodeSymbol(" + vname + ")"
   2423 	default:
   2424 		return "e.encode(" + vname + ")"
   2425 	}
   2426 }
   2427 
   2428 // Note: used for fastpath only
   2429 func genInternalDecCommandAsString(s string, mapkey bool) string {
   2430 	switch s {
   2431 	case "uint":
   2432 		return "uint(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize))"
   2433 	case "uint8":
   2434 		return "uint8(chkOvf.UintV(d.d.DecodeUint64(), 8))"
   2435 	case "uint16":
   2436 		return "uint16(chkOvf.UintV(d.d.DecodeUint64(), 16))"
   2437 	case "uint32":
   2438 		return "uint32(chkOvf.UintV(d.d.DecodeUint64(), 32))"
   2439 	case "uint64":
   2440 		return "d.d.DecodeUint64()"
   2441 	case "uintptr":
   2442 		return "uintptr(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize))"
   2443 	case "int":
   2444 		return "int(chkOvf.IntV(d.d.DecodeInt64(), intBitsize))"
   2445 	case "int8":
   2446 		return "int8(chkOvf.IntV(d.d.DecodeInt64(), 8))"
   2447 	case "int16":
   2448 		return "int16(chkOvf.IntV(d.d.DecodeInt64(), 16))"
   2449 	case "int32":
   2450 		return "int32(chkOvf.IntV(d.d.DecodeInt64(), 32))"
   2451 	case "int64":
   2452 		return "d.d.DecodeInt64()"
   2453 
   2454 	case "string":
   2455 		// if mapkey {
   2456 		// 	return "d.stringZC(d.d.DecodeStringAsBytes())"
   2457 		// }
   2458 		// return "string(d.d.DecodeStringAsBytes())"
   2459 		return "d.stringZC(d.d.DecodeStringAsBytes())"
   2460 	case "[]byte", "[]uint8", "bytes":
   2461 		return "d.d.DecodeBytes([]byte{})"
   2462 	case "float32":
   2463 		return "float32(d.decodeFloat32())"
   2464 	case "float64":
   2465 		return "d.d.DecodeFloat64()"
   2466 	case "complex64":
   2467 		return "complex(d.decodeFloat32(), 0)"
   2468 	case "complex128":
   2469 		return "complex(d.d.DecodeFloat64(), 0)"
   2470 	case "bool":
   2471 		return "d.d.DecodeBool()"
   2472 	default:
   2473 		halt.onerror(errors.New("gen internal: unknown type for decode: " + s))
   2474 	}
   2475 	return ""
   2476 }
   2477 
   2478 // func genInternalSortType(s string, elem bool) string {
   2479 // 	for _, v := range [...]string{
   2480 // 		"int",
   2481 // 		"uint",
   2482 // 		"float",
   2483 // 		"bool",
   2484 // 		"string",
   2485 // 		"bytes", "[]uint8", "[]byte",
   2486 // 	} {
   2487 // 		if v == "[]byte" || v == "[]uint8" {
   2488 // 			v = "bytes"
   2489 // 		}
   2490 // 		if strings.HasPrefix(s, v) {
   2491 // 			if v == "int" || v == "uint" || v == "float" {
   2492 // 				v += "64"
   2493 // 			}
   2494 // 			if elem {
   2495 // 				return v
   2496 // 			}
   2497 // 			return v + "Slice"
   2498 // 		}
   2499 // 	}
   2500 // 	halt.onerror(errors.New("sorttype: unexpected type: " + s))
   2501 // }
   2502 
   2503 func genInternalSortType(s string, elem bool) string {
   2504 	if elem {
   2505 		return s
   2506 	}
   2507 	return s + "Slice"
   2508 }
   2509 
   2510 // MARKER: keep in sync with codecgen/gen.go
   2511 func genStripVendor(s string) string {
   2512 	// HACK: Misbehaviour occurs in go 1.5. May have to re-visit this later.
   2513 	// if s contains /vendor/ OR startsWith vendor/, then return everything after it.
   2514 	const vendorStart = "vendor/"
   2515 	const vendorInline = "/vendor/"
   2516 	if i := strings.LastIndex(s, vendorInline); i >= 0 {
   2517 		s = s[i+len(vendorInline):]
   2518 	} else if strings.HasPrefix(s, vendorStart) {
   2519 		s = s[len(vendorStart):]
   2520 	}
   2521 	return s
   2522 }
   2523 
   2524 // var genInternalMu sync.Mutex
   2525 var genInternalV = genInternal{Version: genVersion}
   2526 var genInternalTmplFuncs template.FuncMap
   2527 var genInternalOnce sync.Once
   2528 
   2529 func genInternalInit() {
   2530 	wordSizeBytes := int(intBitsize) / 8
   2531 
   2532 	typesizes := map[string]int{
   2533 		"interface{}": 2 * wordSizeBytes,
   2534 		"string":      2 * wordSizeBytes,
   2535 		"[]byte":      3 * wordSizeBytes,
   2536 		"uint":        1 * wordSizeBytes,
   2537 		"uint8":       1,
   2538 		"uint16":      2,
   2539 		"uint32":      4,
   2540 		"uint64":      8,
   2541 		"uintptr":     1 * wordSizeBytes,
   2542 		"int":         1 * wordSizeBytes,
   2543 		"int8":        1,
   2544 		"int16":       2,
   2545 		"int32":       4,
   2546 		"int64":       8,
   2547 		"float32":     4,
   2548 		"float64":     8,
   2549 		"complex64":   8,
   2550 		"complex128":  16,
   2551 		"bool":        1,
   2552 	}
   2553 
   2554 	// keep as slice, so it is in specific iteration order.
   2555 	// Initial order was uint64, string, interface{}, int, int64, ...
   2556 
   2557 	var types = [...]string{
   2558 		"interface{}",
   2559 		"string",
   2560 		"[]byte",
   2561 		"float32",
   2562 		"float64",
   2563 		"uint",
   2564 		"uint8",
   2565 		"uint16",
   2566 		"uint32",
   2567 		"uint64",
   2568 		"uintptr",
   2569 		"int",
   2570 		"int8",
   2571 		"int16",
   2572 		"int32",
   2573 		"int64",
   2574 		"bool",
   2575 	}
   2576 
   2577 	var primitivetypes, slicetypes, mapkeytypes, mapvaltypes []string
   2578 
   2579 	primitivetypes = types[:]
   2580 	slicetypes = types[:]
   2581 	mapkeytypes = types[:]
   2582 	mapvaltypes = types[:]
   2583 
   2584 	if genFastpathTrimTypes {
   2585 		// Note: we only create fast-paths for commonly used types.
   2586 		// Consequently, things like int8, uint16, uint, etc are commented out.
   2587 
   2588 		slicetypes = genInternalFastpathSliceTypes()
   2589 		mapkeytypes = genInternalFastpathMapKeyTypes()
   2590 		mapvaltypes = genInternalFastpathMapValueTypes()
   2591 	}
   2592 
   2593 	// var mapkeytypes [len(&types) - 1]string // skip bool
   2594 	// copy(mapkeytypes[:], types[:])
   2595 
   2596 	// var mb []byte
   2597 	// mb = append(mb, '|')
   2598 	// for _, s := range mapkeytypes {
   2599 	// 	mb = append(mb, s...)
   2600 	// 	mb = append(mb, '|')
   2601 	// }
   2602 	// var mapkeytypestr = string(mb)
   2603 
   2604 	var gt = genInternal{Version: genVersion, Formats: genFormats}
   2605 
   2606 	// For each slice or map type, there must be a (symmetrical) Encode and Decode fast-path function
   2607 
   2608 	for _, s := range primitivetypes {
   2609 		gt.Values = append(gt.Values,
   2610 			fastpathGenV{Primitive: s, Size: typesizes[s], NoCanonical: !genFastpathCanonical})
   2611 	}
   2612 	for _, s := range slicetypes {
   2613 		// if s != "uint8" { // do not generate fast path for slice of bytes. Treat specially already.
   2614 		// 	gt.Values = append(gt.Values, fastpathGenV{Elem: s, Size: typesizes[s]})
   2615 		// }
   2616 		gt.Values = append(gt.Values,
   2617 			fastpathGenV{Elem: s, Size: typesizes[s], NoCanonical: !genFastpathCanonical})
   2618 	}
   2619 	for _, s := range mapkeytypes {
   2620 		// if _, ok := typesizes[s]; !ok {
   2621 		// if strings.Contains(mapkeytypestr, "|"+s+"|") {
   2622 		// 	gt.Values = append(gt.Values, fastpathGenV{MapKey: s, Elem: s, Size: 2 * typesizes[s]})
   2623 		// }
   2624 		for _, ms := range mapvaltypes {
   2625 			gt.Values = append(gt.Values,
   2626 				fastpathGenV{MapKey: s, Elem: ms, Size: typesizes[s] + typesizes[ms], NoCanonical: !genFastpathCanonical})
   2627 		}
   2628 	}
   2629 
   2630 	funcs := make(template.FuncMap)
   2631 	// funcs["haspfx"] = strings.HasPrefix
   2632 	funcs["encmd"] = genInternalEncCommandAsString
   2633 	funcs["decmd"] = genInternalDecCommandAsString
   2634 	funcs["zerocmd"] = genInternalZeroValue
   2635 	funcs["nonzerocmd"] = genInternalNonZeroValue
   2636 	funcs["hasprefix"] = strings.HasPrefix
   2637 	funcs["sorttype"] = genInternalSortType
   2638 
   2639 	genInternalV = gt
   2640 	genInternalTmplFuncs = funcs
   2641 }
   2642 
   2643 // genInternalGoFile is used to generate source files from templates.
   2644 func genInternalGoFile(r io.Reader, w io.Writer) (err error) {
   2645 	genInternalOnce.Do(genInternalInit)
   2646 
   2647 	gt := genInternalV
   2648 
   2649 	t := template.New("").Funcs(genInternalTmplFuncs)
   2650 
   2651 	tmplstr, err := ioutil.ReadAll(r)
   2652 	if err != nil {
   2653 		return
   2654 	}
   2655 
   2656 	if t, err = t.Parse(string(tmplstr)); err != nil {
   2657 		return
   2658 	}
   2659 
   2660 	var out bytes.Buffer
   2661 	err = t.Execute(&out, gt)
   2662 	if err != nil {
   2663 		return
   2664 	}
   2665 
   2666 	bout, err := format.Source(out.Bytes())
   2667 	if err != nil {
   2668 		w.Write(out.Bytes()) // write out if error, so we can still see.
   2669 		// w.Write(bout) // write out if error, as much as possible, so we can still see.
   2670 		return
   2671 	}
   2672 	w.Write(bout)
   2673 	return
   2674 }
   2675 
   2676 func genInternalFastpathSliceTypes() []string {
   2677 	return []string{
   2678 		"interface{}",
   2679 		"string",
   2680 		"[]byte",
   2681 		"float32",
   2682 		"float64",
   2683 		// "uint",
   2684 		// "uint8", // no need for fastpath of []uint8, as it is handled specially
   2685 		"uint8", // keep fast-path, so it doesn't have to go through reflection
   2686 		// "uint16",
   2687 		// "uint32",
   2688 		"uint64",
   2689 		// "uintptr",
   2690 		"int",
   2691 		// "int8",
   2692 		// "int16",
   2693 		"int32", // rune
   2694 		"int64",
   2695 		"bool",
   2696 	}
   2697 }
   2698 
   2699 func genInternalFastpathMapKeyTypes() []string {
   2700 	return []string{
   2701 		// "interface{}",
   2702 		"string",
   2703 		// "[]byte",
   2704 		// "float32",
   2705 		// "float64",
   2706 		// "uint",
   2707 		"uint8", // byte
   2708 		// "uint16",
   2709 		// "uint32",
   2710 		"uint64", // used for keys
   2711 		// "uintptr",
   2712 		"int", // default number key
   2713 		// "int8",
   2714 		// "int16",
   2715 		"int32", // rune
   2716 		// "int64",
   2717 		// "bool",
   2718 	}
   2719 }
   2720 
   2721 func genInternalFastpathMapValueTypes() []string {
   2722 	return []string{
   2723 		"interface{}",
   2724 		"string",
   2725 		"[]byte",
   2726 		// "uint",
   2727 		"uint8", // byte
   2728 		// "uint16",
   2729 		// "uint32",
   2730 		"uint64", // used for keys, etc
   2731 		// "uintptr",
   2732 		"int", // default number
   2733 		//"int8",
   2734 		// "int16",
   2735 		"int32", // rune (mostly used for unicode)
   2736 		// "int64",
   2737 		// "float32",
   2738 		"float64",
   2739 		"bool",
   2740 	}
   2741 }
   2742 
   2743 // sort-slice ...
   2744 // generates sort implementations for
   2745 // various slice types and combination slice+reflect.Value types.
   2746 //
   2747 // The combination slice+reflect.Value types are used
   2748 // during canonical encode, and the others are used during fast-path
   2749 // encoding of map keys.
   2750 
   2751 // genInternalSortableTypes returns the types
   2752 // that are used for fast-path canonical's encoding of maps.
   2753 //
   2754 // For now, we only support the highest sizes for
   2755 // int64, uint64, float64, bool, string, bytes.
   2756 func genInternalSortableTypes() []string {
   2757 	return genInternalFastpathMapKeyTypes()
   2758 }
   2759 
   2760 // genInternalSortablePlusTypes returns the types
   2761 // that are used for reflection-based canonical's encoding of maps.
   2762 //
   2763 // For now, we only support the highest sizes for
   2764 // int64, uint64, float64, string, bytes.
   2765 func genInternalSortablePlusTypes() []string {
   2766 	return []string{
   2767 		"string",
   2768 		"float64",
   2769 		"uint64",
   2770 		// "uintptr",
   2771 		"int64",
   2772 		// "bool",
   2773 		"time",
   2774 		"bytes",
   2775 	}
   2776 }
   2777 
   2778 func genTypeForShortName(s string) string {
   2779 	switch s {
   2780 	case "time":
   2781 		return "time.Time"
   2782 	case "bytes":
   2783 		return "[]byte"
   2784 	}
   2785 	return s
   2786 }
   2787 
   2788 func genArgs(args ...interface{}) map[string]interface{} {
   2789 	m := make(map[string]interface{}, len(args)/2)
   2790 	for i := 0; i < len(args); {
   2791 		m[args[i].(string)] = args[i+1]
   2792 		i += 2
   2793 	}
   2794 	return m
   2795 }
   2796 
   2797 func genEndsWith(s0 string, sn ...string) bool {
   2798 	for _, s := range sn {
   2799 		if strings.HasSuffix(s0, s) {
   2800 			return true
   2801 		}
   2802 	}
   2803 	return false
   2804 }
   2805 
   2806 func genCheckErr(err error) {
   2807 	halt.onerror(err)
   2808 }
   2809 
   2810 func genRunSortTmpl2Go(fnameIn, fnameOut string) {
   2811 	var err error
   2812 
   2813 	funcs := make(template.FuncMap)
   2814 	funcs["sortables"] = genInternalSortableTypes
   2815 	funcs["sortablesplus"] = genInternalSortablePlusTypes
   2816 	funcs["tshort"] = genTypeForShortName
   2817 	funcs["endswith"] = genEndsWith
   2818 	funcs["args"] = genArgs
   2819 
   2820 	t := template.New("").Funcs(funcs)
   2821 	fin, err := os.Open(fnameIn)
   2822 	genCheckErr(err)
   2823 	defer fin.Close()
   2824 	fout, err := os.Create(fnameOut)
   2825 	genCheckErr(err)
   2826 	defer fout.Close()
   2827 	tmplstr, err := ioutil.ReadAll(fin)
   2828 	genCheckErr(err)
   2829 	t, err = t.Parse(string(tmplstr))
   2830 	genCheckErr(err)
   2831 	var out bytes.Buffer
   2832 	err = t.Execute(&out, 0)
   2833 	genCheckErr(err)
   2834 	bout, err := format.Source(out.Bytes())
   2835 	if err != nil {
   2836 		fout.Write(out.Bytes()) // write out if error, so we can still see.
   2837 	}
   2838 	genCheckErr(err)
   2839 	// write out if error, as much as possible, so we can still see.
   2840 	_, err = fout.Write(bout)
   2841 	genCheckErr(err)
   2842 }
   2843 
   2844 func genRunTmpl2Go(fnameIn, fnameOut string) {
   2845 	// println("____ " + fnameIn + " --> " + fnameOut + " ______")
   2846 	fin, err := os.Open(fnameIn)
   2847 	genCheckErr(err)
   2848 	defer fin.Close()
   2849 	fout, err := os.Create(fnameOut)
   2850 	genCheckErr(err)
   2851 	defer fout.Close()
   2852 	err = genInternalGoFile(fin, fout)
   2853 	genCheckErr(err)
   2854 }
   2855 
   2856 // --- some methods here for other types, which are only used in codecgen
   2857 
   2858 // depth returns number of valid nodes in the hierachy
   2859 func (path *structFieldInfoPathNode) root() *structFieldInfoPathNode {
   2860 TOP:
   2861 	if path.parent != nil {
   2862 		path = path.parent
   2863 		goto TOP
   2864 	}
   2865 	return path
   2866 }
   2867 
   2868 func (path *structFieldInfoPathNode) fullpath() (p []*structFieldInfoPathNode) {
   2869 	// this method is mostly called by a command-line tool - it's not optimized, and that's ok.
   2870 	// it shouldn't be used in typical runtime use - as it does unnecessary allocation.
   2871 	d := path.depth()
   2872 	p = make([]*structFieldInfoPathNode, d)
   2873 	for d--; d >= 0; d-- {
   2874 		p[d] = path
   2875 		path = path.parent
   2876 	}
   2877 	return
   2878 }