gtsocial-umbx

Unnamed repository; edit this file 'description' to name the repository.
Log | Files | Refs | README | LICENSE

assertions.go (58691B)


      1 package assert
      2 
      3 import (
      4 	"bufio"
      5 	"bytes"
      6 	"encoding/json"
      7 	"errors"
      8 	"fmt"
      9 	"math"
     10 	"os"
     11 	"reflect"
     12 	"regexp"
     13 	"runtime"
     14 	"runtime/debug"
     15 	"strings"
     16 	"time"
     17 	"unicode"
     18 	"unicode/utf8"
     19 
     20 	"github.com/davecgh/go-spew/spew"
     21 	"github.com/pmezard/go-difflib/difflib"
     22 	yaml "gopkg.in/yaml.v3"
     23 )
     24 
     25 //go:generate sh -c "cd ../_codegen && go build && cd - && ../_codegen/_codegen -output-package=assert -template=assertion_format.go.tmpl"
     26 
     27 // TestingT is an interface wrapper around *testing.T
     28 type TestingT interface {
     29 	Errorf(format string, args ...interface{})
     30 }
     31 
     32 // ComparisonAssertionFunc is a common function prototype when comparing two values.  Can be useful
     33 // for table driven tests.
     34 type ComparisonAssertionFunc func(TestingT, interface{}, interface{}, ...interface{}) bool
     35 
     36 // ValueAssertionFunc is a common function prototype when validating a single value.  Can be useful
     37 // for table driven tests.
     38 type ValueAssertionFunc func(TestingT, interface{}, ...interface{}) bool
     39 
     40 // BoolAssertionFunc is a common function prototype when validating a bool value.  Can be useful
     41 // for table driven tests.
     42 type BoolAssertionFunc func(TestingT, bool, ...interface{}) bool
     43 
     44 // ErrorAssertionFunc is a common function prototype when validating an error value.  Can be useful
     45 // for table driven tests.
     46 type ErrorAssertionFunc func(TestingT, error, ...interface{}) bool
     47 
     48 // Comparison is a custom function that returns true on success and false on failure
     49 type Comparison func() (success bool)
     50 
     51 /*
     52 	Helper functions
     53 */
     54 
     55 // ObjectsAreEqual determines if two objects are considered equal.
     56 //
     57 // This function does no assertion of any kind.
     58 func ObjectsAreEqual(expected, actual interface{}) bool {
     59 	if expected == nil || actual == nil {
     60 		return expected == actual
     61 	}
     62 
     63 	exp, ok := expected.([]byte)
     64 	if !ok {
     65 		return reflect.DeepEqual(expected, actual)
     66 	}
     67 
     68 	act, ok := actual.([]byte)
     69 	if !ok {
     70 		return false
     71 	}
     72 	if exp == nil || act == nil {
     73 		return exp == nil && act == nil
     74 	}
     75 	return bytes.Equal(exp, act)
     76 }
     77 
     78 // copyExportedFields iterates downward through nested data structures and creates a copy
     79 // that only contains the exported struct fields.
     80 func copyExportedFields(expected interface{}) interface{} {
     81 	if isNil(expected) {
     82 		return expected
     83 	}
     84 
     85 	expectedType := reflect.TypeOf(expected)
     86 	expectedKind := expectedType.Kind()
     87 	expectedValue := reflect.ValueOf(expected)
     88 
     89 	switch expectedKind {
     90 	case reflect.Struct:
     91 		result := reflect.New(expectedType).Elem()
     92 		for i := 0; i < expectedType.NumField(); i++ {
     93 			field := expectedType.Field(i)
     94 			isExported := field.IsExported()
     95 			if isExported {
     96 				fieldValue := expectedValue.Field(i)
     97 				if isNil(fieldValue) || isNil(fieldValue.Interface()) {
     98 					continue
     99 				}
    100 				newValue := copyExportedFields(fieldValue.Interface())
    101 				result.Field(i).Set(reflect.ValueOf(newValue))
    102 			}
    103 		}
    104 		return result.Interface()
    105 
    106 	case reflect.Ptr:
    107 		result := reflect.New(expectedType.Elem())
    108 		unexportedRemoved := copyExportedFields(expectedValue.Elem().Interface())
    109 		result.Elem().Set(reflect.ValueOf(unexportedRemoved))
    110 		return result.Interface()
    111 
    112 	case reflect.Array, reflect.Slice:
    113 		result := reflect.MakeSlice(expectedType, expectedValue.Len(), expectedValue.Len())
    114 		for i := 0; i < expectedValue.Len(); i++ {
    115 			index := expectedValue.Index(i)
    116 			if isNil(index) {
    117 				continue
    118 			}
    119 			unexportedRemoved := copyExportedFields(index.Interface())
    120 			result.Index(i).Set(reflect.ValueOf(unexportedRemoved))
    121 		}
    122 		return result.Interface()
    123 
    124 	case reflect.Map:
    125 		result := reflect.MakeMap(expectedType)
    126 		for _, k := range expectedValue.MapKeys() {
    127 			index := expectedValue.MapIndex(k)
    128 			unexportedRemoved := copyExportedFields(index.Interface())
    129 			result.SetMapIndex(k, reflect.ValueOf(unexportedRemoved))
    130 		}
    131 		return result.Interface()
    132 
    133 	default:
    134 		return expected
    135 	}
    136 }
    137 
    138 // ObjectsExportedFieldsAreEqual determines if the exported (public) fields of two objects are
    139 // considered equal. This comparison of only exported fields is applied recursively to nested data
    140 // structures.
    141 //
    142 // This function does no assertion of any kind.
    143 func ObjectsExportedFieldsAreEqual(expected, actual interface{}) bool {
    144 	expectedCleaned := copyExportedFields(expected)
    145 	actualCleaned := copyExportedFields(actual)
    146 	return ObjectsAreEqualValues(expectedCleaned, actualCleaned)
    147 }
    148 
    149 // ObjectsAreEqualValues gets whether two objects are equal, or if their
    150 // values are equal.
    151 func ObjectsAreEqualValues(expected, actual interface{}) bool {
    152 	if ObjectsAreEqual(expected, actual) {
    153 		return true
    154 	}
    155 
    156 	actualType := reflect.TypeOf(actual)
    157 	if actualType == nil {
    158 		return false
    159 	}
    160 	expectedValue := reflect.ValueOf(expected)
    161 	if expectedValue.IsValid() && expectedValue.Type().ConvertibleTo(actualType) {
    162 		// Attempt comparison after type conversion
    163 		return reflect.DeepEqual(expectedValue.Convert(actualType).Interface(), actual)
    164 	}
    165 
    166 	return false
    167 }
    168 
    169 /* CallerInfo is necessary because the assert functions use the testing object
    170 internally, causing it to print the file:line of the assert method, rather than where
    171 the problem actually occurred in calling code.*/
    172 
    173 // CallerInfo returns an array of strings containing the file and line number
    174 // of each stack frame leading from the current test to the assert call that
    175 // failed.
    176 func CallerInfo() []string {
    177 
    178 	var pc uintptr
    179 	var ok bool
    180 	var file string
    181 	var line int
    182 	var name string
    183 
    184 	callers := []string{}
    185 	for i := 0; ; i++ {
    186 		pc, file, line, ok = runtime.Caller(i)
    187 		if !ok {
    188 			// The breaks below failed to terminate the loop, and we ran off the
    189 			// end of the call stack.
    190 			break
    191 		}
    192 
    193 		// This is a huge edge case, but it will panic if this is the case, see #180
    194 		if file == "<autogenerated>" {
    195 			break
    196 		}
    197 
    198 		f := runtime.FuncForPC(pc)
    199 		if f == nil {
    200 			break
    201 		}
    202 		name = f.Name()
    203 
    204 		// testing.tRunner is the standard library function that calls
    205 		// tests. Subtests are called directly by tRunner, without going through
    206 		// the Test/Benchmark/Example function that contains the t.Run calls, so
    207 		// with subtests we should break when we hit tRunner, without adding it
    208 		// to the list of callers.
    209 		if name == "testing.tRunner" {
    210 			break
    211 		}
    212 
    213 		parts := strings.Split(file, "/")
    214 		if len(parts) > 1 {
    215 			filename := parts[len(parts)-1]
    216 			dir := parts[len(parts)-2]
    217 			if (dir != "assert" && dir != "mock" && dir != "require") || filename == "mock_test.go" {
    218 				callers = append(callers, fmt.Sprintf("%s:%d", file, line))
    219 			}
    220 		}
    221 
    222 		// Drop the package
    223 		segments := strings.Split(name, ".")
    224 		name = segments[len(segments)-1]
    225 		if isTest(name, "Test") ||
    226 			isTest(name, "Benchmark") ||
    227 			isTest(name, "Example") {
    228 			break
    229 		}
    230 	}
    231 
    232 	return callers
    233 }
    234 
    235 // Stolen from the `go test` tool.
    236 // isTest tells whether name looks like a test (or benchmark, according to prefix).
    237 // It is a Test (say) if there is a character after Test that is not a lower-case letter.
    238 // We don't want TesticularCancer.
    239 func isTest(name, prefix string) bool {
    240 	if !strings.HasPrefix(name, prefix) {
    241 		return false
    242 	}
    243 	if len(name) == len(prefix) { // "Test" is ok
    244 		return true
    245 	}
    246 	r, _ := utf8.DecodeRuneInString(name[len(prefix):])
    247 	return !unicode.IsLower(r)
    248 }
    249 
    250 func messageFromMsgAndArgs(msgAndArgs ...interface{}) string {
    251 	if len(msgAndArgs) == 0 || msgAndArgs == nil {
    252 		return ""
    253 	}
    254 	if len(msgAndArgs) == 1 {
    255 		msg := msgAndArgs[0]
    256 		if msgAsStr, ok := msg.(string); ok {
    257 			return msgAsStr
    258 		}
    259 		return fmt.Sprintf("%+v", msg)
    260 	}
    261 	if len(msgAndArgs) > 1 {
    262 		return fmt.Sprintf(msgAndArgs[0].(string), msgAndArgs[1:]...)
    263 	}
    264 	return ""
    265 }
    266 
    267 // Aligns the provided message so that all lines after the first line start at the same location as the first line.
    268 // Assumes that the first line starts at the correct location (after carriage return, tab, label, spacer and tab).
    269 // The longestLabelLen parameter specifies the length of the longest label in the output (required becaues this is the
    270 // basis on which the alignment occurs).
    271 func indentMessageLines(message string, longestLabelLen int) string {
    272 	outBuf := new(bytes.Buffer)
    273 
    274 	for i, scanner := 0, bufio.NewScanner(strings.NewReader(message)); scanner.Scan(); i++ {
    275 		// no need to align first line because it starts at the correct location (after the label)
    276 		if i != 0 {
    277 			// append alignLen+1 spaces to align with "{{longestLabel}}:" before adding tab
    278 			outBuf.WriteString("\n\t" + strings.Repeat(" ", longestLabelLen+1) + "\t")
    279 		}
    280 		outBuf.WriteString(scanner.Text())
    281 	}
    282 
    283 	return outBuf.String()
    284 }
    285 
    286 type failNower interface {
    287 	FailNow()
    288 }
    289 
    290 // FailNow fails test
    291 func FailNow(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool {
    292 	if h, ok := t.(tHelper); ok {
    293 		h.Helper()
    294 	}
    295 	Fail(t, failureMessage, msgAndArgs...)
    296 
    297 	// We cannot extend TestingT with FailNow() and
    298 	// maintain backwards compatibility, so we fallback
    299 	// to panicking when FailNow is not available in
    300 	// TestingT.
    301 	// See issue #263
    302 
    303 	if t, ok := t.(failNower); ok {
    304 		t.FailNow()
    305 	} else {
    306 		panic("test failed and t is missing `FailNow()`")
    307 	}
    308 	return false
    309 }
    310 
    311 // Fail reports a failure through
    312 func Fail(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool {
    313 	if h, ok := t.(tHelper); ok {
    314 		h.Helper()
    315 	}
    316 	content := []labeledContent{
    317 		{"Error Trace", strings.Join(CallerInfo(), "\n\t\t\t")},
    318 		{"Error", failureMessage},
    319 	}
    320 
    321 	// Add test name if the Go version supports it
    322 	if n, ok := t.(interface {
    323 		Name() string
    324 	}); ok {
    325 		content = append(content, labeledContent{"Test", n.Name()})
    326 	}
    327 
    328 	message := messageFromMsgAndArgs(msgAndArgs...)
    329 	if len(message) > 0 {
    330 		content = append(content, labeledContent{"Messages", message})
    331 	}
    332 
    333 	t.Errorf("\n%s", ""+labeledOutput(content...))
    334 
    335 	return false
    336 }
    337 
    338 type labeledContent struct {
    339 	label   string
    340 	content string
    341 }
    342 
    343 // labeledOutput returns a string consisting of the provided labeledContent. Each labeled output is appended in the following manner:
    344 //
    345 //	\t{{label}}:{{align_spaces}}\t{{content}}\n
    346 //
    347 // The initial carriage return is required to undo/erase any padding added by testing.T.Errorf. The "\t{{label}}:" is for the label.
    348 // If a label is shorter than the longest label provided, padding spaces are added to make all the labels match in length. Once this
    349 // alignment is achieved, "\t{{content}}\n" is added for the output.
    350 //
    351 // If the content of the labeledOutput contains line breaks, the subsequent lines are aligned so that they start at the same location as the first line.
    352 func labeledOutput(content ...labeledContent) string {
    353 	longestLabel := 0
    354 	for _, v := range content {
    355 		if len(v.label) > longestLabel {
    356 			longestLabel = len(v.label)
    357 		}
    358 	}
    359 	var output string
    360 	for _, v := range content {
    361 		output += "\t" + v.label + ":" + strings.Repeat(" ", longestLabel-len(v.label)) + "\t" + indentMessageLines(v.content, longestLabel) + "\n"
    362 	}
    363 	return output
    364 }
    365 
    366 // Implements asserts that an object is implemented by the specified interface.
    367 //
    368 //	assert.Implements(t, (*MyInterface)(nil), new(MyObject))
    369 func Implements(t TestingT, interfaceObject interface{}, object interface{}, msgAndArgs ...interface{}) bool {
    370 	if h, ok := t.(tHelper); ok {
    371 		h.Helper()
    372 	}
    373 	interfaceType := reflect.TypeOf(interfaceObject).Elem()
    374 
    375 	if object == nil {
    376 		return Fail(t, fmt.Sprintf("Cannot check if nil implements %v", interfaceType), msgAndArgs...)
    377 	}
    378 	if !reflect.TypeOf(object).Implements(interfaceType) {
    379 		return Fail(t, fmt.Sprintf("%T must implement %v", object, interfaceType), msgAndArgs...)
    380 	}
    381 
    382 	return true
    383 }
    384 
    385 // IsType asserts that the specified objects are of the same type.
    386 func IsType(t TestingT, expectedType interface{}, object interface{}, msgAndArgs ...interface{}) bool {
    387 	if h, ok := t.(tHelper); ok {
    388 		h.Helper()
    389 	}
    390 
    391 	if !ObjectsAreEqual(reflect.TypeOf(object), reflect.TypeOf(expectedType)) {
    392 		return Fail(t, fmt.Sprintf("Object expected to be of type %v, but was %v", reflect.TypeOf(expectedType), reflect.TypeOf(object)), msgAndArgs...)
    393 	}
    394 
    395 	return true
    396 }
    397 
    398 // Equal asserts that two objects are equal.
    399 //
    400 //	assert.Equal(t, 123, 123)
    401 //
    402 // Pointer variable equality is determined based on the equality of the
    403 // referenced values (as opposed to the memory addresses). Function equality
    404 // cannot be determined and will always fail.
    405 func Equal(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
    406 	if h, ok := t.(tHelper); ok {
    407 		h.Helper()
    408 	}
    409 	if err := validateEqualArgs(expected, actual); err != nil {
    410 		return Fail(t, fmt.Sprintf("Invalid operation: %#v == %#v (%s)",
    411 			expected, actual, err), msgAndArgs...)
    412 	}
    413 
    414 	if !ObjectsAreEqual(expected, actual) {
    415 		diff := diff(expected, actual)
    416 		expected, actual = formatUnequalValues(expected, actual)
    417 		return Fail(t, fmt.Sprintf("Not equal: \n"+
    418 			"expected: %s\n"+
    419 			"actual  : %s%s", expected, actual, diff), msgAndArgs...)
    420 	}
    421 
    422 	return true
    423 
    424 }
    425 
    426 // validateEqualArgs checks whether provided arguments can be safely used in the
    427 // Equal/NotEqual functions.
    428 func validateEqualArgs(expected, actual interface{}) error {
    429 	if expected == nil && actual == nil {
    430 		return nil
    431 	}
    432 
    433 	if isFunction(expected) || isFunction(actual) {
    434 		return errors.New("cannot take func type as argument")
    435 	}
    436 	return nil
    437 }
    438 
    439 // Same asserts that two pointers reference the same object.
    440 //
    441 //	assert.Same(t, ptr1, ptr2)
    442 //
    443 // Both arguments must be pointer variables. Pointer variable sameness is
    444 // determined based on the equality of both type and value.
    445 func Same(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
    446 	if h, ok := t.(tHelper); ok {
    447 		h.Helper()
    448 	}
    449 
    450 	if !samePointers(expected, actual) {
    451 		return Fail(t, fmt.Sprintf("Not same: \n"+
    452 			"expected: %p %#v\n"+
    453 			"actual  : %p %#v", expected, expected, actual, actual), msgAndArgs...)
    454 	}
    455 
    456 	return true
    457 }
    458 
    459 // NotSame asserts that two pointers do not reference the same object.
    460 //
    461 //	assert.NotSame(t, ptr1, ptr2)
    462 //
    463 // Both arguments must be pointer variables. Pointer variable sameness is
    464 // determined based on the equality of both type and value.
    465 func NotSame(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
    466 	if h, ok := t.(tHelper); ok {
    467 		h.Helper()
    468 	}
    469 
    470 	if samePointers(expected, actual) {
    471 		return Fail(t, fmt.Sprintf(
    472 			"Expected and actual point to the same object: %p %#v",
    473 			expected, expected), msgAndArgs...)
    474 	}
    475 	return true
    476 }
    477 
    478 // samePointers compares two generic interface objects and returns whether
    479 // they point to the same object
    480 func samePointers(first, second interface{}) bool {
    481 	firstPtr, secondPtr := reflect.ValueOf(first), reflect.ValueOf(second)
    482 	if firstPtr.Kind() != reflect.Ptr || secondPtr.Kind() != reflect.Ptr {
    483 		return false
    484 	}
    485 
    486 	firstType, secondType := reflect.TypeOf(first), reflect.TypeOf(second)
    487 	if firstType != secondType {
    488 		return false
    489 	}
    490 
    491 	// compare pointer addresses
    492 	return first == second
    493 }
    494 
    495 // formatUnequalValues takes two values of arbitrary types and returns string
    496 // representations appropriate to be presented to the user.
    497 //
    498 // If the values are not of like type, the returned strings will be prefixed
    499 // with the type name, and the value will be enclosed in parenthesis similar
    500 // to a type conversion in the Go grammar.
    501 func formatUnequalValues(expected, actual interface{}) (e string, a string) {
    502 	if reflect.TypeOf(expected) != reflect.TypeOf(actual) {
    503 		return fmt.Sprintf("%T(%s)", expected, truncatingFormat(expected)),
    504 			fmt.Sprintf("%T(%s)", actual, truncatingFormat(actual))
    505 	}
    506 	switch expected.(type) {
    507 	case time.Duration:
    508 		return fmt.Sprintf("%v", expected), fmt.Sprintf("%v", actual)
    509 	}
    510 	return truncatingFormat(expected), truncatingFormat(actual)
    511 }
    512 
    513 // truncatingFormat formats the data and truncates it if it's too long.
    514 //
    515 // This helps keep formatted error messages lines from exceeding the
    516 // bufio.MaxScanTokenSize max line length that the go testing framework imposes.
    517 func truncatingFormat(data interface{}) string {
    518 	value := fmt.Sprintf("%#v", data)
    519 	max := bufio.MaxScanTokenSize - 100 // Give us some space the type info too if needed.
    520 	if len(value) > max {
    521 		value = value[0:max] + "<... truncated>"
    522 	}
    523 	return value
    524 }
    525 
    526 // EqualValues asserts that two objects are equal or convertable to the same types
    527 // and equal.
    528 //
    529 //	assert.EqualValues(t, uint32(123), int32(123))
    530 func EqualValues(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
    531 	if h, ok := t.(tHelper); ok {
    532 		h.Helper()
    533 	}
    534 
    535 	if !ObjectsAreEqualValues(expected, actual) {
    536 		diff := diff(expected, actual)
    537 		expected, actual = formatUnequalValues(expected, actual)
    538 		return Fail(t, fmt.Sprintf("Not equal: \n"+
    539 			"expected: %s\n"+
    540 			"actual  : %s%s", expected, actual, diff), msgAndArgs...)
    541 	}
    542 
    543 	return true
    544 
    545 }
    546 
    547 // EqualExportedValues asserts that the types of two objects are equal and their public
    548 // fields are also equal. This is useful for comparing structs that have private fields
    549 // that could potentially differ.
    550 //
    551 //	 type S struct {
    552 //		Exported     	int
    553 //		notExported   	int
    554 //	 }
    555 //	 assert.EqualExportedValues(t, S{1, 2}, S{1, 3}) => true
    556 //	 assert.EqualExportedValues(t, S{1, 2}, S{2, 3}) => false
    557 func EqualExportedValues(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
    558 	if h, ok := t.(tHelper); ok {
    559 		h.Helper()
    560 	}
    561 
    562 	aType := reflect.TypeOf(expected)
    563 	bType := reflect.TypeOf(actual)
    564 
    565 	if aType != bType {
    566 		return Fail(t, fmt.Sprintf("Types expected to match exactly\n\t%v != %v", aType, bType), msgAndArgs...)
    567 	}
    568 
    569 	if aType.Kind() != reflect.Struct {
    570 		return Fail(t, fmt.Sprintf("Types expected to both be struct \n\t%v != %v", aType.Kind(), reflect.Struct), msgAndArgs...)
    571 	}
    572 
    573 	if bType.Kind() != reflect.Struct {
    574 		return Fail(t, fmt.Sprintf("Types expected to both be struct \n\t%v != %v", bType.Kind(), reflect.Struct), msgAndArgs...)
    575 	}
    576 
    577 	expected = copyExportedFields(expected)
    578 	actual = copyExportedFields(actual)
    579 
    580 	if !ObjectsAreEqualValues(expected, actual) {
    581 		diff := diff(expected, actual)
    582 		expected, actual = formatUnequalValues(expected, actual)
    583 		return Fail(t, fmt.Sprintf("Not equal (comparing only exported fields): \n"+
    584 			"expected: %s\n"+
    585 			"actual  : %s%s", expected, actual, diff), msgAndArgs...)
    586 	}
    587 
    588 	return true
    589 }
    590 
    591 // Exactly asserts that two objects are equal in value and type.
    592 //
    593 //	assert.Exactly(t, int32(123), int64(123))
    594 func Exactly(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
    595 	if h, ok := t.(tHelper); ok {
    596 		h.Helper()
    597 	}
    598 
    599 	aType := reflect.TypeOf(expected)
    600 	bType := reflect.TypeOf(actual)
    601 
    602 	if aType != bType {
    603 		return Fail(t, fmt.Sprintf("Types expected to match exactly\n\t%v != %v", aType, bType), msgAndArgs...)
    604 	}
    605 
    606 	return Equal(t, expected, actual, msgAndArgs...)
    607 
    608 }
    609 
    610 // NotNil asserts that the specified object is not nil.
    611 //
    612 //	assert.NotNil(t, err)
    613 func NotNil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
    614 	if !isNil(object) {
    615 		return true
    616 	}
    617 	if h, ok := t.(tHelper); ok {
    618 		h.Helper()
    619 	}
    620 	return Fail(t, "Expected value not to be nil.", msgAndArgs...)
    621 }
    622 
    623 // containsKind checks if a specified kind in the slice of kinds.
    624 func containsKind(kinds []reflect.Kind, kind reflect.Kind) bool {
    625 	for i := 0; i < len(kinds); i++ {
    626 		if kind == kinds[i] {
    627 			return true
    628 		}
    629 	}
    630 
    631 	return false
    632 }
    633 
    634 // isNil checks if a specified object is nil or not, without Failing.
    635 func isNil(object interface{}) bool {
    636 	if object == nil {
    637 		return true
    638 	}
    639 
    640 	value := reflect.ValueOf(object)
    641 	kind := value.Kind()
    642 	isNilableKind := containsKind(
    643 		[]reflect.Kind{
    644 			reflect.Chan, reflect.Func,
    645 			reflect.Interface, reflect.Map,
    646 			reflect.Ptr, reflect.Slice, reflect.UnsafePointer},
    647 		kind)
    648 
    649 	if isNilableKind && value.IsNil() {
    650 		return true
    651 	}
    652 
    653 	return false
    654 }
    655 
    656 // Nil asserts that the specified object is nil.
    657 //
    658 //	assert.Nil(t, err)
    659 func Nil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
    660 	if isNil(object) {
    661 		return true
    662 	}
    663 	if h, ok := t.(tHelper); ok {
    664 		h.Helper()
    665 	}
    666 	return Fail(t, fmt.Sprintf("Expected nil, but got: %#v", object), msgAndArgs...)
    667 }
    668 
    669 // isEmpty gets whether the specified object is considered empty or not.
    670 func isEmpty(object interface{}) bool {
    671 
    672 	// get nil case out of the way
    673 	if object == nil {
    674 		return true
    675 	}
    676 
    677 	objValue := reflect.ValueOf(object)
    678 
    679 	switch objValue.Kind() {
    680 	// collection types are empty when they have no element
    681 	case reflect.Chan, reflect.Map, reflect.Slice:
    682 		return objValue.Len() == 0
    683 	// pointers are empty if nil or if the value they point to is empty
    684 	case reflect.Ptr:
    685 		if objValue.IsNil() {
    686 			return true
    687 		}
    688 		deref := objValue.Elem().Interface()
    689 		return isEmpty(deref)
    690 	// for all other types, compare against the zero value
    691 	// array types are empty when they match their zero-initialized state
    692 	default:
    693 		zero := reflect.Zero(objValue.Type())
    694 		return reflect.DeepEqual(object, zero.Interface())
    695 	}
    696 }
    697 
    698 // Empty asserts that the specified object is empty.  I.e. nil, "", false, 0 or either
    699 // a slice or a channel with len == 0.
    700 //
    701 //	assert.Empty(t, obj)
    702 func Empty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
    703 	pass := isEmpty(object)
    704 	if !pass {
    705 		if h, ok := t.(tHelper); ok {
    706 			h.Helper()
    707 		}
    708 		Fail(t, fmt.Sprintf("Should be empty, but was %v", object), msgAndArgs...)
    709 	}
    710 
    711 	return pass
    712 
    713 }
    714 
    715 // NotEmpty asserts that the specified object is NOT empty.  I.e. not nil, "", false, 0 or either
    716 // a slice or a channel with len == 0.
    717 //
    718 //	if assert.NotEmpty(t, obj) {
    719 //	  assert.Equal(t, "two", obj[1])
    720 //	}
    721 func NotEmpty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
    722 	pass := !isEmpty(object)
    723 	if !pass {
    724 		if h, ok := t.(tHelper); ok {
    725 			h.Helper()
    726 		}
    727 		Fail(t, fmt.Sprintf("Should NOT be empty, but was %v", object), msgAndArgs...)
    728 	}
    729 
    730 	return pass
    731 
    732 }
    733 
    734 // getLen try to get length of object.
    735 // return (false, 0) if impossible.
    736 func getLen(x interface{}) (ok bool, length int) {
    737 	v := reflect.ValueOf(x)
    738 	defer func() {
    739 		if e := recover(); e != nil {
    740 			ok = false
    741 		}
    742 	}()
    743 	return true, v.Len()
    744 }
    745 
    746 // Len asserts that the specified object has specific length.
    747 // Len also fails if the object has a type that len() not accept.
    748 //
    749 //	assert.Len(t, mySlice, 3)
    750 func Len(t TestingT, object interface{}, length int, msgAndArgs ...interface{}) bool {
    751 	if h, ok := t.(tHelper); ok {
    752 		h.Helper()
    753 	}
    754 	ok, l := getLen(object)
    755 	if !ok {
    756 		return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", object), msgAndArgs...)
    757 	}
    758 
    759 	if l != length {
    760 		return Fail(t, fmt.Sprintf("\"%s\" should have %d item(s), but has %d", object, length, l), msgAndArgs...)
    761 	}
    762 	return true
    763 }
    764 
    765 // True asserts that the specified value is true.
    766 //
    767 //	assert.True(t, myBool)
    768 func True(t TestingT, value bool, msgAndArgs ...interface{}) bool {
    769 	if !value {
    770 		if h, ok := t.(tHelper); ok {
    771 			h.Helper()
    772 		}
    773 		return Fail(t, "Should be true", msgAndArgs...)
    774 	}
    775 
    776 	return true
    777 
    778 }
    779 
    780 // False asserts that the specified value is false.
    781 //
    782 //	assert.False(t, myBool)
    783 func False(t TestingT, value bool, msgAndArgs ...interface{}) bool {
    784 	if value {
    785 		if h, ok := t.(tHelper); ok {
    786 			h.Helper()
    787 		}
    788 		return Fail(t, "Should be false", msgAndArgs...)
    789 	}
    790 
    791 	return true
    792 
    793 }
    794 
    795 // NotEqual asserts that the specified values are NOT equal.
    796 //
    797 //	assert.NotEqual(t, obj1, obj2)
    798 //
    799 // Pointer variable equality is determined based on the equality of the
    800 // referenced values (as opposed to the memory addresses).
    801 func NotEqual(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
    802 	if h, ok := t.(tHelper); ok {
    803 		h.Helper()
    804 	}
    805 	if err := validateEqualArgs(expected, actual); err != nil {
    806 		return Fail(t, fmt.Sprintf("Invalid operation: %#v != %#v (%s)",
    807 			expected, actual, err), msgAndArgs...)
    808 	}
    809 
    810 	if ObjectsAreEqual(expected, actual) {
    811 		return Fail(t, fmt.Sprintf("Should not be: %#v\n", actual), msgAndArgs...)
    812 	}
    813 
    814 	return true
    815 
    816 }
    817 
    818 // NotEqualValues asserts that two objects are not equal even when converted to the same type
    819 //
    820 //	assert.NotEqualValues(t, obj1, obj2)
    821 func NotEqualValues(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
    822 	if h, ok := t.(tHelper); ok {
    823 		h.Helper()
    824 	}
    825 
    826 	if ObjectsAreEqualValues(expected, actual) {
    827 		return Fail(t, fmt.Sprintf("Should not be: %#v\n", actual), msgAndArgs...)
    828 	}
    829 
    830 	return true
    831 }
    832 
    833 // containsElement try loop over the list check if the list includes the element.
    834 // return (false, false) if impossible.
    835 // return (true, false) if element was not found.
    836 // return (true, true) if element was found.
    837 func containsElement(list interface{}, element interface{}) (ok, found bool) {
    838 
    839 	listValue := reflect.ValueOf(list)
    840 	listType := reflect.TypeOf(list)
    841 	if listType == nil {
    842 		return false, false
    843 	}
    844 	listKind := listType.Kind()
    845 	defer func() {
    846 		if e := recover(); e != nil {
    847 			ok = false
    848 			found = false
    849 		}
    850 	}()
    851 
    852 	if listKind == reflect.String {
    853 		elementValue := reflect.ValueOf(element)
    854 		return true, strings.Contains(listValue.String(), elementValue.String())
    855 	}
    856 
    857 	if listKind == reflect.Map {
    858 		mapKeys := listValue.MapKeys()
    859 		for i := 0; i < len(mapKeys); i++ {
    860 			if ObjectsAreEqual(mapKeys[i].Interface(), element) {
    861 				return true, true
    862 			}
    863 		}
    864 		return true, false
    865 	}
    866 
    867 	for i := 0; i < listValue.Len(); i++ {
    868 		if ObjectsAreEqual(listValue.Index(i).Interface(), element) {
    869 			return true, true
    870 		}
    871 	}
    872 	return true, false
    873 
    874 }
    875 
    876 // Contains asserts that the specified string, list(array, slice...) or map contains the
    877 // specified substring or element.
    878 //
    879 //	assert.Contains(t, "Hello World", "World")
    880 //	assert.Contains(t, ["Hello", "World"], "World")
    881 //	assert.Contains(t, {"Hello": "World"}, "Hello")
    882 func Contains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {
    883 	if h, ok := t.(tHelper); ok {
    884 		h.Helper()
    885 	}
    886 
    887 	ok, found := containsElement(s, contains)
    888 	if !ok {
    889 		return Fail(t, fmt.Sprintf("%#v could not be applied builtin len()", s), msgAndArgs...)
    890 	}
    891 	if !found {
    892 		return Fail(t, fmt.Sprintf("%#v does not contain %#v", s, contains), msgAndArgs...)
    893 	}
    894 
    895 	return true
    896 
    897 }
    898 
    899 // NotContains asserts that the specified string, list(array, slice...) or map does NOT contain the
    900 // specified substring or element.
    901 //
    902 //	assert.NotContains(t, "Hello World", "Earth")
    903 //	assert.NotContains(t, ["Hello", "World"], "Earth")
    904 //	assert.NotContains(t, {"Hello": "World"}, "Earth")
    905 func NotContains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {
    906 	if h, ok := t.(tHelper); ok {
    907 		h.Helper()
    908 	}
    909 
    910 	ok, found := containsElement(s, contains)
    911 	if !ok {
    912 		return Fail(t, fmt.Sprintf("%#v could not be applied builtin len()", s), msgAndArgs...)
    913 	}
    914 	if found {
    915 		return Fail(t, fmt.Sprintf("%#v should not contain %#v", s, contains), msgAndArgs...)
    916 	}
    917 
    918 	return true
    919 
    920 }
    921 
    922 // Subset asserts that the specified list(array, slice...) contains all
    923 // elements given in the specified subset(array, slice...).
    924 //
    925 //	assert.Subset(t, [1, 2, 3], [1, 2], "But [1, 2, 3] does contain [1, 2]")
    926 func Subset(t TestingT, list, subset interface{}, msgAndArgs ...interface{}) (ok bool) {
    927 	if h, ok := t.(tHelper); ok {
    928 		h.Helper()
    929 	}
    930 	if subset == nil {
    931 		return true // we consider nil to be equal to the nil set
    932 	}
    933 
    934 	listKind := reflect.TypeOf(list).Kind()
    935 	if listKind != reflect.Array && listKind != reflect.Slice && listKind != reflect.Map {
    936 		return Fail(t, fmt.Sprintf("%q has an unsupported type %s", list, listKind), msgAndArgs...)
    937 	}
    938 
    939 	subsetKind := reflect.TypeOf(subset).Kind()
    940 	if subsetKind != reflect.Array && subsetKind != reflect.Slice && listKind != reflect.Map {
    941 		return Fail(t, fmt.Sprintf("%q has an unsupported type %s", subset, subsetKind), msgAndArgs...)
    942 	}
    943 
    944 	if subsetKind == reflect.Map && listKind == reflect.Map {
    945 		subsetMap := reflect.ValueOf(subset)
    946 		actualMap := reflect.ValueOf(list)
    947 
    948 		for _, k := range subsetMap.MapKeys() {
    949 			ev := subsetMap.MapIndex(k)
    950 			av := actualMap.MapIndex(k)
    951 
    952 			if !av.IsValid() {
    953 				return Fail(t, fmt.Sprintf("%#v does not contain %#v", list, subset), msgAndArgs...)
    954 			}
    955 			if !ObjectsAreEqual(ev.Interface(), av.Interface()) {
    956 				return Fail(t, fmt.Sprintf("%#v does not contain %#v", list, subset), msgAndArgs...)
    957 			}
    958 		}
    959 
    960 		return true
    961 	}
    962 
    963 	subsetList := reflect.ValueOf(subset)
    964 	for i := 0; i < subsetList.Len(); i++ {
    965 		element := subsetList.Index(i).Interface()
    966 		ok, found := containsElement(list, element)
    967 		if !ok {
    968 			return Fail(t, fmt.Sprintf("%#v could not be applied builtin len()", list), msgAndArgs...)
    969 		}
    970 		if !found {
    971 			return Fail(t, fmt.Sprintf("%#v does not contain %#v", list, element), msgAndArgs...)
    972 		}
    973 	}
    974 
    975 	return true
    976 }
    977 
    978 // NotSubset asserts that the specified list(array, slice...) contains not all
    979 // elements given in the specified subset(array, slice...).
    980 //
    981 //	assert.NotSubset(t, [1, 3, 4], [1, 2], "But [1, 3, 4] does not contain [1, 2]")
    982 func NotSubset(t TestingT, list, subset interface{}, msgAndArgs ...interface{}) (ok bool) {
    983 	if h, ok := t.(tHelper); ok {
    984 		h.Helper()
    985 	}
    986 	if subset == nil {
    987 		return Fail(t, "nil is the empty set which is a subset of every set", msgAndArgs...)
    988 	}
    989 
    990 	listKind := reflect.TypeOf(list).Kind()
    991 	if listKind != reflect.Array && listKind != reflect.Slice && listKind != reflect.Map {
    992 		return Fail(t, fmt.Sprintf("%q has an unsupported type %s", list, listKind), msgAndArgs...)
    993 	}
    994 
    995 	subsetKind := reflect.TypeOf(subset).Kind()
    996 	if subsetKind != reflect.Array && subsetKind != reflect.Slice && listKind != reflect.Map {
    997 		return Fail(t, fmt.Sprintf("%q has an unsupported type %s", subset, subsetKind), msgAndArgs...)
    998 	}
    999 
   1000 	if subsetKind == reflect.Map && listKind == reflect.Map {
   1001 		subsetMap := reflect.ValueOf(subset)
   1002 		actualMap := reflect.ValueOf(list)
   1003 
   1004 		for _, k := range subsetMap.MapKeys() {
   1005 			ev := subsetMap.MapIndex(k)
   1006 			av := actualMap.MapIndex(k)
   1007 
   1008 			if !av.IsValid() {
   1009 				return true
   1010 			}
   1011 			if !ObjectsAreEqual(ev.Interface(), av.Interface()) {
   1012 				return true
   1013 			}
   1014 		}
   1015 
   1016 		return Fail(t, fmt.Sprintf("%q is a subset of %q", subset, list), msgAndArgs...)
   1017 	}
   1018 
   1019 	subsetList := reflect.ValueOf(subset)
   1020 	for i := 0; i < subsetList.Len(); i++ {
   1021 		element := subsetList.Index(i).Interface()
   1022 		ok, found := containsElement(list, element)
   1023 		if !ok {
   1024 			return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", list), msgAndArgs...)
   1025 		}
   1026 		if !found {
   1027 			return true
   1028 		}
   1029 	}
   1030 
   1031 	return Fail(t, fmt.Sprintf("%q is a subset of %q", subset, list), msgAndArgs...)
   1032 }
   1033 
   1034 // ElementsMatch asserts that the specified listA(array, slice...) is equal to specified
   1035 // listB(array, slice...) ignoring the order of the elements. If there are duplicate elements,
   1036 // the number of appearances of each of them in both lists should match.
   1037 //
   1038 // assert.ElementsMatch(t, [1, 3, 2, 3], [1, 3, 3, 2])
   1039 func ElementsMatch(t TestingT, listA, listB interface{}, msgAndArgs ...interface{}) (ok bool) {
   1040 	if h, ok := t.(tHelper); ok {
   1041 		h.Helper()
   1042 	}
   1043 	if isEmpty(listA) && isEmpty(listB) {
   1044 		return true
   1045 	}
   1046 
   1047 	if !isList(t, listA, msgAndArgs...) || !isList(t, listB, msgAndArgs...) {
   1048 		return false
   1049 	}
   1050 
   1051 	extraA, extraB := diffLists(listA, listB)
   1052 
   1053 	if len(extraA) == 0 && len(extraB) == 0 {
   1054 		return true
   1055 	}
   1056 
   1057 	return Fail(t, formatListDiff(listA, listB, extraA, extraB), msgAndArgs...)
   1058 }
   1059 
   1060 // isList checks that the provided value is array or slice.
   1061 func isList(t TestingT, list interface{}, msgAndArgs ...interface{}) (ok bool) {
   1062 	kind := reflect.TypeOf(list).Kind()
   1063 	if kind != reflect.Array && kind != reflect.Slice {
   1064 		return Fail(t, fmt.Sprintf("%q has an unsupported type %s, expecting array or slice", list, kind),
   1065 			msgAndArgs...)
   1066 	}
   1067 	return true
   1068 }
   1069 
   1070 // diffLists diffs two arrays/slices and returns slices of elements that are only in A and only in B.
   1071 // If some element is present multiple times, each instance is counted separately (e.g. if something is 2x in A and
   1072 // 5x in B, it will be 0x in extraA and 3x in extraB). The order of items in both lists is ignored.
   1073 func diffLists(listA, listB interface{}) (extraA, extraB []interface{}) {
   1074 	aValue := reflect.ValueOf(listA)
   1075 	bValue := reflect.ValueOf(listB)
   1076 
   1077 	aLen := aValue.Len()
   1078 	bLen := bValue.Len()
   1079 
   1080 	// Mark indexes in bValue that we already used
   1081 	visited := make([]bool, bLen)
   1082 	for i := 0; i < aLen; i++ {
   1083 		element := aValue.Index(i).Interface()
   1084 		found := false
   1085 		for j := 0; j < bLen; j++ {
   1086 			if visited[j] {
   1087 				continue
   1088 			}
   1089 			if ObjectsAreEqual(bValue.Index(j).Interface(), element) {
   1090 				visited[j] = true
   1091 				found = true
   1092 				break
   1093 			}
   1094 		}
   1095 		if !found {
   1096 			extraA = append(extraA, element)
   1097 		}
   1098 	}
   1099 
   1100 	for j := 0; j < bLen; j++ {
   1101 		if visited[j] {
   1102 			continue
   1103 		}
   1104 		extraB = append(extraB, bValue.Index(j).Interface())
   1105 	}
   1106 
   1107 	return
   1108 }
   1109 
   1110 func formatListDiff(listA, listB interface{}, extraA, extraB []interface{}) string {
   1111 	var msg bytes.Buffer
   1112 
   1113 	msg.WriteString("elements differ")
   1114 	if len(extraA) > 0 {
   1115 		msg.WriteString("\n\nextra elements in list A:\n")
   1116 		msg.WriteString(spewConfig.Sdump(extraA))
   1117 	}
   1118 	if len(extraB) > 0 {
   1119 		msg.WriteString("\n\nextra elements in list B:\n")
   1120 		msg.WriteString(spewConfig.Sdump(extraB))
   1121 	}
   1122 	msg.WriteString("\n\nlistA:\n")
   1123 	msg.WriteString(spewConfig.Sdump(listA))
   1124 	msg.WriteString("\n\nlistB:\n")
   1125 	msg.WriteString(spewConfig.Sdump(listB))
   1126 
   1127 	return msg.String()
   1128 }
   1129 
   1130 // Condition uses a Comparison to assert a complex condition.
   1131 func Condition(t TestingT, comp Comparison, msgAndArgs ...interface{}) bool {
   1132 	if h, ok := t.(tHelper); ok {
   1133 		h.Helper()
   1134 	}
   1135 	result := comp()
   1136 	if !result {
   1137 		Fail(t, "Condition failed!", msgAndArgs...)
   1138 	}
   1139 	return result
   1140 }
   1141 
   1142 // PanicTestFunc defines a func that should be passed to the assert.Panics and assert.NotPanics
   1143 // methods, and represents a simple func that takes no arguments, and returns nothing.
   1144 type PanicTestFunc func()
   1145 
   1146 // didPanic returns true if the function passed to it panics. Otherwise, it returns false.
   1147 func didPanic(f PanicTestFunc) (didPanic bool, message interface{}, stack string) {
   1148 	didPanic = true
   1149 
   1150 	defer func() {
   1151 		message = recover()
   1152 		if didPanic {
   1153 			stack = string(debug.Stack())
   1154 		}
   1155 	}()
   1156 
   1157 	// call the target function
   1158 	f()
   1159 	didPanic = false
   1160 
   1161 	return
   1162 }
   1163 
   1164 // Panics asserts that the code inside the specified PanicTestFunc panics.
   1165 //
   1166 //	assert.Panics(t, func(){ GoCrazy() })
   1167 func Panics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {
   1168 	if h, ok := t.(tHelper); ok {
   1169 		h.Helper()
   1170 	}
   1171 
   1172 	if funcDidPanic, panicValue, _ := didPanic(f); !funcDidPanic {
   1173 		return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%#v", f, panicValue), msgAndArgs...)
   1174 	}
   1175 
   1176 	return true
   1177 }
   1178 
   1179 // PanicsWithValue asserts that the code inside the specified PanicTestFunc panics, and that
   1180 // the recovered panic value equals the expected panic value.
   1181 //
   1182 //	assert.PanicsWithValue(t, "crazy error", func(){ GoCrazy() })
   1183 func PanicsWithValue(t TestingT, expected interface{}, f PanicTestFunc, msgAndArgs ...interface{}) bool {
   1184 	if h, ok := t.(tHelper); ok {
   1185 		h.Helper()
   1186 	}
   1187 
   1188 	funcDidPanic, panicValue, panickedStack := didPanic(f)
   1189 	if !funcDidPanic {
   1190 		return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%#v", f, panicValue), msgAndArgs...)
   1191 	}
   1192 	if panicValue != expected {
   1193 		return Fail(t, fmt.Sprintf("func %#v should panic with value:\t%#v\n\tPanic value:\t%#v\n\tPanic stack:\t%s", f, expected, panicValue, panickedStack), msgAndArgs...)
   1194 	}
   1195 
   1196 	return true
   1197 }
   1198 
   1199 // PanicsWithError asserts that the code inside the specified PanicTestFunc
   1200 // panics, and that the recovered panic value is an error that satisfies the
   1201 // EqualError comparison.
   1202 //
   1203 //	assert.PanicsWithError(t, "crazy error", func(){ GoCrazy() })
   1204 func PanicsWithError(t TestingT, errString string, f PanicTestFunc, msgAndArgs ...interface{}) bool {
   1205 	if h, ok := t.(tHelper); ok {
   1206 		h.Helper()
   1207 	}
   1208 
   1209 	funcDidPanic, panicValue, panickedStack := didPanic(f)
   1210 	if !funcDidPanic {
   1211 		return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%#v", f, panicValue), msgAndArgs...)
   1212 	}
   1213 	panicErr, ok := panicValue.(error)
   1214 	if !ok || panicErr.Error() != errString {
   1215 		return Fail(t, fmt.Sprintf("func %#v should panic with error message:\t%#v\n\tPanic value:\t%#v\n\tPanic stack:\t%s", f, errString, panicValue, panickedStack), msgAndArgs...)
   1216 	}
   1217 
   1218 	return true
   1219 }
   1220 
   1221 // NotPanics asserts that the code inside the specified PanicTestFunc does NOT panic.
   1222 //
   1223 //	assert.NotPanics(t, func(){ RemainCalm() })
   1224 func NotPanics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {
   1225 	if h, ok := t.(tHelper); ok {
   1226 		h.Helper()
   1227 	}
   1228 
   1229 	if funcDidPanic, panicValue, panickedStack := didPanic(f); funcDidPanic {
   1230 		return Fail(t, fmt.Sprintf("func %#v should not panic\n\tPanic value:\t%v\n\tPanic stack:\t%s", f, panicValue, panickedStack), msgAndArgs...)
   1231 	}
   1232 
   1233 	return true
   1234 }
   1235 
   1236 // WithinDuration asserts that the two times are within duration delta of each other.
   1237 //
   1238 //	assert.WithinDuration(t, time.Now(), time.Now(), 10*time.Second)
   1239 func WithinDuration(t TestingT, expected, actual time.Time, delta time.Duration, msgAndArgs ...interface{}) bool {
   1240 	if h, ok := t.(tHelper); ok {
   1241 		h.Helper()
   1242 	}
   1243 
   1244 	dt := expected.Sub(actual)
   1245 	if dt < -delta || dt > delta {
   1246 		return Fail(t, fmt.Sprintf("Max difference between %v and %v allowed is %v, but difference was %v", expected, actual, delta, dt), msgAndArgs...)
   1247 	}
   1248 
   1249 	return true
   1250 }
   1251 
   1252 // WithinRange asserts that a time is within a time range (inclusive).
   1253 //
   1254 //	assert.WithinRange(t, time.Now(), time.Now().Add(-time.Second), time.Now().Add(time.Second))
   1255 func WithinRange(t TestingT, actual, start, end time.Time, msgAndArgs ...interface{}) bool {
   1256 	if h, ok := t.(tHelper); ok {
   1257 		h.Helper()
   1258 	}
   1259 
   1260 	if end.Before(start) {
   1261 		return Fail(t, "Start should be before end", msgAndArgs...)
   1262 	}
   1263 
   1264 	if actual.Before(start) {
   1265 		return Fail(t, fmt.Sprintf("Time %v expected to be in time range %v to %v, but is before the range", actual, start, end), msgAndArgs...)
   1266 	} else if actual.After(end) {
   1267 		return Fail(t, fmt.Sprintf("Time %v expected to be in time range %v to %v, but is after the range", actual, start, end), msgAndArgs...)
   1268 	}
   1269 
   1270 	return true
   1271 }
   1272 
   1273 func toFloat(x interface{}) (float64, bool) {
   1274 	var xf float64
   1275 	xok := true
   1276 
   1277 	switch xn := x.(type) {
   1278 	case uint:
   1279 		xf = float64(xn)
   1280 	case uint8:
   1281 		xf = float64(xn)
   1282 	case uint16:
   1283 		xf = float64(xn)
   1284 	case uint32:
   1285 		xf = float64(xn)
   1286 	case uint64:
   1287 		xf = float64(xn)
   1288 	case int:
   1289 		xf = float64(xn)
   1290 	case int8:
   1291 		xf = float64(xn)
   1292 	case int16:
   1293 		xf = float64(xn)
   1294 	case int32:
   1295 		xf = float64(xn)
   1296 	case int64:
   1297 		xf = float64(xn)
   1298 	case float32:
   1299 		xf = float64(xn)
   1300 	case float64:
   1301 		xf = xn
   1302 	case time.Duration:
   1303 		xf = float64(xn)
   1304 	default:
   1305 		xok = false
   1306 	}
   1307 
   1308 	return xf, xok
   1309 }
   1310 
   1311 // InDelta asserts that the two numerals are within delta of each other.
   1312 //
   1313 //	assert.InDelta(t, math.Pi, 22/7.0, 0.01)
   1314 func InDelta(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
   1315 	if h, ok := t.(tHelper); ok {
   1316 		h.Helper()
   1317 	}
   1318 
   1319 	af, aok := toFloat(expected)
   1320 	bf, bok := toFloat(actual)
   1321 
   1322 	if !aok || !bok {
   1323 		return Fail(t, "Parameters must be numerical", msgAndArgs...)
   1324 	}
   1325 
   1326 	if math.IsNaN(af) && math.IsNaN(bf) {
   1327 		return true
   1328 	}
   1329 
   1330 	if math.IsNaN(af) {
   1331 		return Fail(t, "Expected must not be NaN", msgAndArgs...)
   1332 	}
   1333 
   1334 	if math.IsNaN(bf) {
   1335 		return Fail(t, fmt.Sprintf("Expected %v with delta %v, but was NaN", expected, delta), msgAndArgs...)
   1336 	}
   1337 
   1338 	dt := af - bf
   1339 	if dt < -delta || dt > delta {
   1340 		return Fail(t, fmt.Sprintf("Max difference between %v and %v allowed is %v, but difference was %v", expected, actual, delta, dt), msgAndArgs...)
   1341 	}
   1342 
   1343 	return true
   1344 }
   1345 
   1346 // InDeltaSlice is the same as InDelta, except it compares two slices.
   1347 func InDeltaSlice(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
   1348 	if h, ok := t.(tHelper); ok {
   1349 		h.Helper()
   1350 	}
   1351 	if expected == nil || actual == nil ||
   1352 		reflect.TypeOf(actual).Kind() != reflect.Slice ||
   1353 		reflect.TypeOf(expected).Kind() != reflect.Slice {
   1354 		return Fail(t, "Parameters must be slice", msgAndArgs...)
   1355 	}
   1356 
   1357 	actualSlice := reflect.ValueOf(actual)
   1358 	expectedSlice := reflect.ValueOf(expected)
   1359 
   1360 	for i := 0; i < actualSlice.Len(); i++ {
   1361 		result := InDelta(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), delta, msgAndArgs...)
   1362 		if !result {
   1363 			return result
   1364 		}
   1365 	}
   1366 
   1367 	return true
   1368 }
   1369 
   1370 // InDeltaMapValues is the same as InDelta, but it compares all values between two maps. Both maps must have exactly the same keys.
   1371 func InDeltaMapValues(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
   1372 	if h, ok := t.(tHelper); ok {
   1373 		h.Helper()
   1374 	}
   1375 	if expected == nil || actual == nil ||
   1376 		reflect.TypeOf(actual).Kind() != reflect.Map ||
   1377 		reflect.TypeOf(expected).Kind() != reflect.Map {
   1378 		return Fail(t, "Arguments must be maps", msgAndArgs...)
   1379 	}
   1380 
   1381 	expectedMap := reflect.ValueOf(expected)
   1382 	actualMap := reflect.ValueOf(actual)
   1383 
   1384 	if expectedMap.Len() != actualMap.Len() {
   1385 		return Fail(t, "Arguments must have the same number of keys", msgAndArgs...)
   1386 	}
   1387 
   1388 	for _, k := range expectedMap.MapKeys() {
   1389 		ev := expectedMap.MapIndex(k)
   1390 		av := actualMap.MapIndex(k)
   1391 
   1392 		if !ev.IsValid() {
   1393 			return Fail(t, fmt.Sprintf("missing key %q in expected map", k), msgAndArgs...)
   1394 		}
   1395 
   1396 		if !av.IsValid() {
   1397 			return Fail(t, fmt.Sprintf("missing key %q in actual map", k), msgAndArgs...)
   1398 		}
   1399 
   1400 		if !InDelta(
   1401 			t,
   1402 			ev.Interface(),
   1403 			av.Interface(),
   1404 			delta,
   1405 			msgAndArgs...,
   1406 		) {
   1407 			return false
   1408 		}
   1409 	}
   1410 
   1411 	return true
   1412 }
   1413 
   1414 func calcRelativeError(expected, actual interface{}) (float64, error) {
   1415 	af, aok := toFloat(expected)
   1416 	bf, bok := toFloat(actual)
   1417 	if !aok || !bok {
   1418 		return 0, fmt.Errorf("Parameters must be numerical")
   1419 	}
   1420 	if math.IsNaN(af) && math.IsNaN(bf) {
   1421 		return 0, nil
   1422 	}
   1423 	if math.IsNaN(af) {
   1424 		return 0, errors.New("expected value must not be NaN")
   1425 	}
   1426 	if af == 0 {
   1427 		return 0, fmt.Errorf("expected value must have a value other than zero to calculate the relative error")
   1428 	}
   1429 	if math.IsNaN(bf) {
   1430 		return 0, errors.New("actual value must not be NaN")
   1431 	}
   1432 
   1433 	return math.Abs(af-bf) / math.Abs(af), nil
   1434 }
   1435 
   1436 // InEpsilon asserts that expected and actual have a relative error less than epsilon
   1437 func InEpsilon(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
   1438 	if h, ok := t.(tHelper); ok {
   1439 		h.Helper()
   1440 	}
   1441 	if math.IsNaN(epsilon) {
   1442 		return Fail(t, "epsilon must not be NaN")
   1443 	}
   1444 	actualEpsilon, err := calcRelativeError(expected, actual)
   1445 	if err != nil {
   1446 		return Fail(t, err.Error(), msgAndArgs...)
   1447 	}
   1448 	if actualEpsilon > epsilon {
   1449 		return Fail(t, fmt.Sprintf("Relative error is too high: %#v (expected)\n"+
   1450 			"        < %#v (actual)", epsilon, actualEpsilon), msgAndArgs...)
   1451 	}
   1452 
   1453 	return true
   1454 }
   1455 
   1456 // InEpsilonSlice is the same as InEpsilon, except it compares each value from two slices.
   1457 func InEpsilonSlice(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
   1458 	if h, ok := t.(tHelper); ok {
   1459 		h.Helper()
   1460 	}
   1461 	if expected == nil || actual == nil ||
   1462 		reflect.TypeOf(actual).Kind() != reflect.Slice ||
   1463 		reflect.TypeOf(expected).Kind() != reflect.Slice {
   1464 		return Fail(t, "Parameters must be slice", msgAndArgs...)
   1465 	}
   1466 
   1467 	actualSlice := reflect.ValueOf(actual)
   1468 	expectedSlice := reflect.ValueOf(expected)
   1469 
   1470 	for i := 0; i < actualSlice.Len(); i++ {
   1471 		result := InEpsilon(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), epsilon)
   1472 		if !result {
   1473 			return result
   1474 		}
   1475 	}
   1476 
   1477 	return true
   1478 }
   1479 
   1480 /*
   1481 	Errors
   1482 */
   1483 
   1484 // NoError asserts that a function returned no error (i.e. `nil`).
   1485 //
   1486 //	  actualObj, err := SomeFunction()
   1487 //	  if assert.NoError(t, err) {
   1488 //		   assert.Equal(t, expectedObj, actualObj)
   1489 //	  }
   1490 func NoError(t TestingT, err error, msgAndArgs ...interface{}) bool {
   1491 	if err != nil {
   1492 		if h, ok := t.(tHelper); ok {
   1493 			h.Helper()
   1494 		}
   1495 		return Fail(t, fmt.Sprintf("Received unexpected error:\n%+v", err), msgAndArgs...)
   1496 	}
   1497 
   1498 	return true
   1499 }
   1500 
   1501 // Error asserts that a function returned an error (i.e. not `nil`).
   1502 //
   1503 //	  actualObj, err := SomeFunction()
   1504 //	  if assert.Error(t, err) {
   1505 //		   assert.Equal(t, expectedError, err)
   1506 //	  }
   1507 func Error(t TestingT, err error, msgAndArgs ...interface{}) bool {
   1508 	if err == nil {
   1509 		if h, ok := t.(tHelper); ok {
   1510 			h.Helper()
   1511 		}
   1512 		return Fail(t, "An error is expected but got nil.", msgAndArgs...)
   1513 	}
   1514 
   1515 	return true
   1516 }
   1517 
   1518 // EqualError asserts that a function returned an error (i.e. not `nil`)
   1519 // and that it is equal to the provided error.
   1520 //
   1521 //	actualObj, err := SomeFunction()
   1522 //	assert.EqualError(t, err,  expectedErrorString)
   1523 func EqualError(t TestingT, theError error, errString string, msgAndArgs ...interface{}) bool {
   1524 	if h, ok := t.(tHelper); ok {
   1525 		h.Helper()
   1526 	}
   1527 	if !Error(t, theError, msgAndArgs...) {
   1528 		return false
   1529 	}
   1530 	expected := errString
   1531 	actual := theError.Error()
   1532 	// don't need to use deep equals here, we know they are both strings
   1533 	if expected != actual {
   1534 		return Fail(t, fmt.Sprintf("Error message not equal:\n"+
   1535 			"expected: %q\n"+
   1536 			"actual  : %q", expected, actual), msgAndArgs...)
   1537 	}
   1538 	return true
   1539 }
   1540 
   1541 // ErrorContains asserts that a function returned an error (i.e. not `nil`)
   1542 // and that the error contains the specified substring.
   1543 //
   1544 //	actualObj, err := SomeFunction()
   1545 //	assert.ErrorContains(t, err,  expectedErrorSubString)
   1546 func ErrorContains(t TestingT, theError error, contains string, msgAndArgs ...interface{}) bool {
   1547 	if h, ok := t.(tHelper); ok {
   1548 		h.Helper()
   1549 	}
   1550 	if !Error(t, theError, msgAndArgs...) {
   1551 		return false
   1552 	}
   1553 
   1554 	actual := theError.Error()
   1555 	if !strings.Contains(actual, contains) {
   1556 		return Fail(t, fmt.Sprintf("Error %#v does not contain %#v", actual, contains), msgAndArgs...)
   1557 	}
   1558 
   1559 	return true
   1560 }
   1561 
   1562 // matchRegexp return true if a specified regexp matches a string.
   1563 func matchRegexp(rx interface{}, str interface{}) bool {
   1564 
   1565 	var r *regexp.Regexp
   1566 	if rr, ok := rx.(*regexp.Regexp); ok {
   1567 		r = rr
   1568 	} else {
   1569 		r = regexp.MustCompile(fmt.Sprint(rx))
   1570 	}
   1571 
   1572 	return (r.FindStringIndex(fmt.Sprint(str)) != nil)
   1573 
   1574 }
   1575 
   1576 // Regexp asserts that a specified regexp matches a string.
   1577 //
   1578 //	assert.Regexp(t, regexp.MustCompile("start"), "it's starting")
   1579 //	assert.Regexp(t, "start...$", "it's not starting")
   1580 func Regexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
   1581 	if h, ok := t.(tHelper); ok {
   1582 		h.Helper()
   1583 	}
   1584 
   1585 	match := matchRegexp(rx, str)
   1586 
   1587 	if !match {
   1588 		Fail(t, fmt.Sprintf("Expect \"%v\" to match \"%v\"", str, rx), msgAndArgs...)
   1589 	}
   1590 
   1591 	return match
   1592 }
   1593 
   1594 // NotRegexp asserts that a specified regexp does not match a string.
   1595 //
   1596 //	assert.NotRegexp(t, regexp.MustCompile("starts"), "it's starting")
   1597 //	assert.NotRegexp(t, "^start", "it's not starting")
   1598 func NotRegexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
   1599 	if h, ok := t.(tHelper); ok {
   1600 		h.Helper()
   1601 	}
   1602 	match := matchRegexp(rx, str)
   1603 
   1604 	if match {
   1605 		Fail(t, fmt.Sprintf("Expect \"%v\" to NOT match \"%v\"", str, rx), msgAndArgs...)
   1606 	}
   1607 
   1608 	return !match
   1609 
   1610 }
   1611 
   1612 // Zero asserts that i is the zero value for its type.
   1613 func Zero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool {
   1614 	if h, ok := t.(tHelper); ok {
   1615 		h.Helper()
   1616 	}
   1617 	if i != nil && !reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) {
   1618 		return Fail(t, fmt.Sprintf("Should be zero, but was %v", i), msgAndArgs...)
   1619 	}
   1620 	return true
   1621 }
   1622 
   1623 // NotZero asserts that i is not the zero value for its type.
   1624 func NotZero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool {
   1625 	if h, ok := t.(tHelper); ok {
   1626 		h.Helper()
   1627 	}
   1628 	if i == nil || reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) {
   1629 		return Fail(t, fmt.Sprintf("Should not be zero, but was %v", i), msgAndArgs...)
   1630 	}
   1631 	return true
   1632 }
   1633 
   1634 // FileExists checks whether a file exists in the given path. It also fails if
   1635 // the path points to a directory or there is an error when trying to check the file.
   1636 func FileExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
   1637 	if h, ok := t.(tHelper); ok {
   1638 		h.Helper()
   1639 	}
   1640 	info, err := os.Lstat(path)
   1641 	if err != nil {
   1642 		if os.IsNotExist(err) {
   1643 			return Fail(t, fmt.Sprintf("unable to find file %q", path), msgAndArgs...)
   1644 		}
   1645 		return Fail(t, fmt.Sprintf("error when running os.Lstat(%q): %s", path, err), msgAndArgs...)
   1646 	}
   1647 	if info.IsDir() {
   1648 		return Fail(t, fmt.Sprintf("%q is a directory", path), msgAndArgs...)
   1649 	}
   1650 	return true
   1651 }
   1652 
   1653 // NoFileExists checks whether a file does not exist in a given path. It fails
   1654 // if the path points to an existing _file_ only.
   1655 func NoFileExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
   1656 	if h, ok := t.(tHelper); ok {
   1657 		h.Helper()
   1658 	}
   1659 	info, err := os.Lstat(path)
   1660 	if err != nil {
   1661 		return true
   1662 	}
   1663 	if info.IsDir() {
   1664 		return true
   1665 	}
   1666 	return Fail(t, fmt.Sprintf("file %q exists", path), msgAndArgs...)
   1667 }
   1668 
   1669 // DirExists checks whether a directory exists in the given path. It also fails
   1670 // if the path is a file rather a directory or there is an error checking whether it exists.
   1671 func DirExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
   1672 	if h, ok := t.(tHelper); ok {
   1673 		h.Helper()
   1674 	}
   1675 	info, err := os.Lstat(path)
   1676 	if err != nil {
   1677 		if os.IsNotExist(err) {
   1678 			return Fail(t, fmt.Sprintf("unable to find file %q", path), msgAndArgs...)
   1679 		}
   1680 		return Fail(t, fmt.Sprintf("error when running os.Lstat(%q): %s", path, err), msgAndArgs...)
   1681 	}
   1682 	if !info.IsDir() {
   1683 		return Fail(t, fmt.Sprintf("%q is a file", path), msgAndArgs...)
   1684 	}
   1685 	return true
   1686 }
   1687 
   1688 // NoDirExists checks whether a directory does not exist in the given path.
   1689 // It fails if the path points to an existing _directory_ only.
   1690 func NoDirExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
   1691 	if h, ok := t.(tHelper); ok {
   1692 		h.Helper()
   1693 	}
   1694 	info, err := os.Lstat(path)
   1695 	if err != nil {
   1696 		if os.IsNotExist(err) {
   1697 			return true
   1698 		}
   1699 		return true
   1700 	}
   1701 	if !info.IsDir() {
   1702 		return true
   1703 	}
   1704 	return Fail(t, fmt.Sprintf("directory %q exists", path), msgAndArgs...)
   1705 }
   1706 
   1707 // JSONEq asserts that two JSON strings are equivalent.
   1708 //
   1709 //	assert.JSONEq(t, `{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`)
   1710 func JSONEq(t TestingT, expected string, actual string, msgAndArgs ...interface{}) bool {
   1711 	if h, ok := t.(tHelper); ok {
   1712 		h.Helper()
   1713 	}
   1714 	var expectedJSONAsInterface, actualJSONAsInterface interface{}
   1715 
   1716 	if err := json.Unmarshal([]byte(expected), &expectedJSONAsInterface); err != nil {
   1717 		return Fail(t, fmt.Sprintf("Expected value ('%s') is not valid json.\nJSON parsing error: '%s'", expected, err.Error()), msgAndArgs...)
   1718 	}
   1719 
   1720 	if err := json.Unmarshal([]byte(actual), &actualJSONAsInterface); err != nil {
   1721 		return Fail(t, fmt.Sprintf("Input ('%s') needs to be valid json.\nJSON parsing error: '%s'", actual, err.Error()), msgAndArgs...)
   1722 	}
   1723 
   1724 	return Equal(t, expectedJSONAsInterface, actualJSONAsInterface, msgAndArgs...)
   1725 }
   1726 
   1727 // YAMLEq asserts that two YAML strings are equivalent.
   1728 func YAMLEq(t TestingT, expected string, actual string, msgAndArgs ...interface{}) bool {
   1729 	if h, ok := t.(tHelper); ok {
   1730 		h.Helper()
   1731 	}
   1732 	var expectedYAMLAsInterface, actualYAMLAsInterface interface{}
   1733 
   1734 	if err := yaml.Unmarshal([]byte(expected), &expectedYAMLAsInterface); err != nil {
   1735 		return Fail(t, fmt.Sprintf("Expected value ('%s') is not valid yaml.\nYAML parsing error: '%s'", expected, err.Error()), msgAndArgs...)
   1736 	}
   1737 
   1738 	if err := yaml.Unmarshal([]byte(actual), &actualYAMLAsInterface); err != nil {
   1739 		return Fail(t, fmt.Sprintf("Input ('%s') needs to be valid yaml.\nYAML error: '%s'", actual, err.Error()), msgAndArgs...)
   1740 	}
   1741 
   1742 	return Equal(t, expectedYAMLAsInterface, actualYAMLAsInterface, msgAndArgs...)
   1743 }
   1744 
   1745 func typeAndKind(v interface{}) (reflect.Type, reflect.Kind) {
   1746 	t := reflect.TypeOf(v)
   1747 	k := t.Kind()
   1748 
   1749 	if k == reflect.Ptr {
   1750 		t = t.Elem()
   1751 		k = t.Kind()
   1752 	}
   1753 	return t, k
   1754 }
   1755 
   1756 // diff returns a diff of both values as long as both are of the same type and
   1757 // are a struct, map, slice, array or string. Otherwise it returns an empty string.
   1758 func diff(expected interface{}, actual interface{}) string {
   1759 	if expected == nil || actual == nil {
   1760 		return ""
   1761 	}
   1762 
   1763 	et, ek := typeAndKind(expected)
   1764 	at, _ := typeAndKind(actual)
   1765 
   1766 	if et != at {
   1767 		return ""
   1768 	}
   1769 
   1770 	if ek != reflect.Struct && ek != reflect.Map && ek != reflect.Slice && ek != reflect.Array && ek != reflect.String {
   1771 		return ""
   1772 	}
   1773 
   1774 	var e, a string
   1775 
   1776 	switch et {
   1777 	case reflect.TypeOf(""):
   1778 		e = reflect.ValueOf(expected).String()
   1779 		a = reflect.ValueOf(actual).String()
   1780 	case reflect.TypeOf(time.Time{}):
   1781 		e = spewConfigStringerEnabled.Sdump(expected)
   1782 		a = spewConfigStringerEnabled.Sdump(actual)
   1783 	default:
   1784 		e = spewConfig.Sdump(expected)
   1785 		a = spewConfig.Sdump(actual)
   1786 	}
   1787 
   1788 	diff, _ := difflib.GetUnifiedDiffString(difflib.UnifiedDiff{
   1789 		A:        difflib.SplitLines(e),
   1790 		B:        difflib.SplitLines(a),
   1791 		FromFile: "Expected",
   1792 		FromDate: "",
   1793 		ToFile:   "Actual",
   1794 		ToDate:   "",
   1795 		Context:  1,
   1796 	})
   1797 
   1798 	return "\n\nDiff:\n" + diff
   1799 }
   1800 
   1801 func isFunction(arg interface{}) bool {
   1802 	if arg == nil {
   1803 		return false
   1804 	}
   1805 	return reflect.TypeOf(arg).Kind() == reflect.Func
   1806 }
   1807 
   1808 var spewConfig = spew.ConfigState{
   1809 	Indent:                  " ",
   1810 	DisablePointerAddresses: true,
   1811 	DisableCapacities:       true,
   1812 	SortKeys:                true,
   1813 	DisableMethods:          true,
   1814 	MaxDepth:                10,
   1815 }
   1816 
   1817 var spewConfigStringerEnabled = spew.ConfigState{
   1818 	Indent:                  " ",
   1819 	DisablePointerAddresses: true,
   1820 	DisableCapacities:       true,
   1821 	SortKeys:                true,
   1822 	MaxDepth:                10,
   1823 }
   1824 
   1825 type tHelper interface {
   1826 	Helper()
   1827 }
   1828 
   1829 // Eventually asserts that given condition will be met in waitFor time,
   1830 // periodically checking target function each tick.
   1831 //
   1832 //	assert.Eventually(t, func() bool { return true; }, time.Second, 10*time.Millisecond)
   1833 func Eventually(t TestingT, condition func() bool, waitFor time.Duration, tick time.Duration, msgAndArgs ...interface{}) bool {
   1834 	if h, ok := t.(tHelper); ok {
   1835 		h.Helper()
   1836 	}
   1837 
   1838 	ch := make(chan bool, 1)
   1839 
   1840 	timer := time.NewTimer(waitFor)
   1841 	defer timer.Stop()
   1842 
   1843 	ticker := time.NewTicker(tick)
   1844 	defer ticker.Stop()
   1845 
   1846 	for tick := ticker.C; ; {
   1847 		select {
   1848 		case <-timer.C:
   1849 			return Fail(t, "Condition never satisfied", msgAndArgs...)
   1850 		case <-tick:
   1851 			tick = nil
   1852 			go func() { ch <- condition() }()
   1853 		case v := <-ch:
   1854 			if v {
   1855 				return true
   1856 			}
   1857 			tick = ticker.C
   1858 		}
   1859 	}
   1860 }
   1861 
   1862 // CollectT implements the TestingT interface and collects all errors.
   1863 type CollectT struct {
   1864 	errors []error
   1865 }
   1866 
   1867 // Errorf collects the error.
   1868 func (c *CollectT) Errorf(format string, args ...interface{}) {
   1869 	c.errors = append(c.errors, fmt.Errorf(format, args...))
   1870 }
   1871 
   1872 // FailNow panics.
   1873 func (c *CollectT) FailNow() {
   1874 	panic("Assertion failed")
   1875 }
   1876 
   1877 // Reset clears the collected errors.
   1878 func (c *CollectT) Reset() {
   1879 	c.errors = nil
   1880 }
   1881 
   1882 // Copy copies the collected errors to the supplied t.
   1883 func (c *CollectT) Copy(t TestingT) {
   1884 	if tt, ok := t.(tHelper); ok {
   1885 		tt.Helper()
   1886 	}
   1887 	for _, err := range c.errors {
   1888 		t.Errorf("%v", err)
   1889 	}
   1890 }
   1891 
   1892 // EventuallyWithT asserts that given condition will be met in waitFor time,
   1893 // periodically checking target function each tick. In contrast to Eventually,
   1894 // it supplies a CollectT to the condition function, so that the condition
   1895 // function can use the CollectT to call other assertions.
   1896 // The condition is considered "met" if no errors are raised in a tick.
   1897 // The supplied CollectT collects all errors from one tick (if there are any).
   1898 // If the condition is not met before waitFor, the collected errors of
   1899 // the last tick are copied to t.
   1900 //
   1901 //	externalValue := false
   1902 //	go func() {
   1903 //		time.Sleep(8*time.Second)
   1904 //		externalValue = true
   1905 //	}()
   1906 //	assert.EventuallyWithT(t, func(c *assert.CollectT) {
   1907 //		// add assertions as needed; any assertion failure will fail the current tick
   1908 //		assert.True(c, externalValue, "expected 'externalValue' to be true")
   1909 //	}, 1*time.Second, 10*time.Second, "external state has not changed to 'true'; still false")
   1910 func EventuallyWithT(t TestingT, condition func(collect *CollectT), waitFor time.Duration, tick time.Duration, msgAndArgs ...interface{}) bool {
   1911 	if h, ok := t.(tHelper); ok {
   1912 		h.Helper()
   1913 	}
   1914 
   1915 	collect := new(CollectT)
   1916 	ch := make(chan bool, 1)
   1917 
   1918 	timer := time.NewTimer(waitFor)
   1919 	defer timer.Stop()
   1920 
   1921 	ticker := time.NewTicker(tick)
   1922 	defer ticker.Stop()
   1923 
   1924 	for tick := ticker.C; ; {
   1925 		select {
   1926 		case <-timer.C:
   1927 			collect.Copy(t)
   1928 			return Fail(t, "Condition never satisfied", msgAndArgs...)
   1929 		case <-tick:
   1930 			tick = nil
   1931 			collect.Reset()
   1932 			go func() {
   1933 				condition(collect)
   1934 				ch <- len(collect.errors) == 0
   1935 			}()
   1936 		case v := <-ch:
   1937 			if v {
   1938 				return true
   1939 			}
   1940 			tick = ticker.C
   1941 		}
   1942 	}
   1943 }
   1944 
   1945 // Never asserts that the given condition doesn't satisfy in waitFor time,
   1946 // periodically checking the target function each tick.
   1947 //
   1948 //	assert.Never(t, func() bool { return false; }, time.Second, 10*time.Millisecond)
   1949 func Never(t TestingT, condition func() bool, waitFor time.Duration, tick time.Duration, msgAndArgs ...interface{}) bool {
   1950 	if h, ok := t.(tHelper); ok {
   1951 		h.Helper()
   1952 	}
   1953 
   1954 	ch := make(chan bool, 1)
   1955 
   1956 	timer := time.NewTimer(waitFor)
   1957 	defer timer.Stop()
   1958 
   1959 	ticker := time.NewTicker(tick)
   1960 	defer ticker.Stop()
   1961 
   1962 	for tick := ticker.C; ; {
   1963 		select {
   1964 		case <-timer.C:
   1965 			return true
   1966 		case <-tick:
   1967 			tick = nil
   1968 			go func() { ch <- condition() }()
   1969 		case v := <-ch:
   1970 			if v {
   1971 				return Fail(t, "Condition satisfied", msgAndArgs...)
   1972 			}
   1973 			tick = ticker.C
   1974 		}
   1975 	}
   1976 }
   1977 
   1978 // ErrorIs asserts that at least one of the errors in err's chain matches target.
   1979 // This is a wrapper for errors.Is.
   1980 func ErrorIs(t TestingT, err, target error, msgAndArgs ...interface{}) bool {
   1981 	if h, ok := t.(tHelper); ok {
   1982 		h.Helper()
   1983 	}
   1984 	if errors.Is(err, target) {
   1985 		return true
   1986 	}
   1987 
   1988 	var expectedText string
   1989 	if target != nil {
   1990 		expectedText = target.Error()
   1991 	}
   1992 
   1993 	chain := buildErrorChainString(err)
   1994 
   1995 	return Fail(t, fmt.Sprintf("Target error should be in err chain:\n"+
   1996 		"expected: %q\n"+
   1997 		"in chain: %s", expectedText, chain,
   1998 	), msgAndArgs...)
   1999 }
   2000 
   2001 // NotErrorIs asserts that at none of the errors in err's chain matches target.
   2002 // This is a wrapper for errors.Is.
   2003 func NotErrorIs(t TestingT, err, target error, msgAndArgs ...interface{}) bool {
   2004 	if h, ok := t.(tHelper); ok {
   2005 		h.Helper()
   2006 	}
   2007 	if !errors.Is(err, target) {
   2008 		return true
   2009 	}
   2010 
   2011 	var expectedText string
   2012 	if target != nil {
   2013 		expectedText = target.Error()
   2014 	}
   2015 
   2016 	chain := buildErrorChainString(err)
   2017 
   2018 	return Fail(t, fmt.Sprintf("Target error should not be in err chain:\n"+
   2019 		"found: %q\n"+
   2020 		"in chain: %s", expectedText, chain,
   2021 	), msgAndArgs...)
   2022 }
   2023 
   2024 // ErrorAs asserts that at least one of the errors in err's chain matches target, and if so, sets target to that error value.
   2025 // This is a wrapper for errors.As.
   2026 func ErrorAs(t TestingT, err error, target interface{}, msgAndArgs ...interface{}) bool {
   2027 	if h, ok := t.(tHelper); ok {
   2028 		h.Helper()
   2029 	}
   2030 	if errors.As(err, target) {
   2031 		return true
   2032 	}
   2033 
   2034 	chain := buildErrorChainString(err)
   2035 
   2036 	return Fail(t, fmt.Sprintf("Should be in error chain:\n"+
   2037 		"expected: %q\n"+
   2038 		"in chain: %s", target, chain,
   2039 	), msgAndArgs...)
   2040 }
   2041 
   2042 func buildErrorChainString(err error) string {
   2043 	if err == nil {
   2044 		return ""
   2045 	}
   2046 
   2047 	e := errors.Unwrap(err)
   2048 	chain := fmt.Sprintf("%q", err.Error())
   2049 	for e != nil {
   2050 		chain += fmt.Sprintf("\n\t%q", e.Error())
   2051 		e = errors.Unwrap(e)
   2052 	}
   2053 	return chain
   2054 }