gtsocial-umbx

Unnamed repository; edit this file 'description' to name the repository.
Log | Files | Refs | README | LICENSE

fft.go (9960B)


      1 // Package bigfft implements multiplication of big.Int using FFT.
      2 //
      3 // The implementation is based on the Schönhage-Strassen method
      4 // using integer FFT modulo 2^n+1.
      5 package bigfft
      6 
      7 import (
      8 	"math/big"
      9 	"unsafe"
     10 )
     11 
     12 const _W = int(unsafe.Sizeof(big.Word(0)) * 8)
     13 
     14 type nat []big.Word
     15 
     16 func (n nat) String() string {
     17 	v := new(big.Int)
     18 	v.SetBits(n)
     19 	return v.String()
     20 }
     21 
     22 // fftThreshold is the size (in words) above which FFT is used over
     23 // Karatsuba from math/big.
     24 //
     25 // TestCalibrate seems to indicate a threshold of 60kbits on 32-bit
     26 // arches and 110kbits on 64-bit arches.
     27 var fftThreshold = 1800
     28 
     29 // Mul computes the product x*y and returns z.
     30 // It can be used instead of the Mul method of
     31 // *big.Int from math/big package.
     32 func Mul(x, y *big.Int) *big.Int {
     33 	xwords := len(x.Bits())
     34 	ywords := len(y.Bits())
     35 	if xwords > fftThreshold && ywords > fftThreshold {
     36 		return mulFFT(x, y)
     37 	}
     38 	return new(big.Int).Mul(x, y)
     39 }
     40 
     41 func mulFFT(x, y *big.Int) *big.Int {
     42 	var xb, yb nat = x.Bits(), y.Bits()
     43 	zb := fftmul(xb, yb)
     44 	z := new(big.Int)
     45 	z.SetBits(zb)
     46 	if x.Sign()*y.Sign() < 0 {
     47 		z.Neg(z)
     48 	}
     49 	return z
     50 }
     51 
     52 // A FFT size of K=1<<k is adequate when K is about 2*sqrt(N) where
     53 // N = x.Bitlen() + y.Bitlen().
     54 
     55 func fftmul(x, y nat) nat {
     56 	k, m := fftSize(x, y)
     57 	xp := polyFromNat(x, k, m)
     58 	yp := polyFromNat(y, k, m)
     59 	rp := xp.Mul(&yp)
     60 	return rp.Int()
     61 }
     62 
     63 // fftSizeThreshold[i] is the maximal size (in bits) where we should use
     64 // fft size i.
     65 var fftSizeThreshold = [...]int64{0, 0, 0,
     66 	4 << 10, 8 << 10, 16 << 10, // 5 
     67 	32 << 10, 64 << 10, 1 << 18, 1 << 20, 3 << 20, // 10
     68 	8 << 20, 30 << 20, 100 << 20, 300 << 20, 600 << 20,
     69 }
     70 
     71 // returns the FFT length k, m the number of words per chunk
     72 // such that m << k is larger than the number of words
     73 // in x*y.
     74 func fftSize(x, y nat) (k uint, m int) {
     75 	words := len(x) + len(y)
     76 	bits := int64(words) * int64(_W)
     77 	k = uint(len(fftSizeThreshold))
     78 	for i := range fftSizeThreshold {
     79 		if fftSizeThreshold[i] > bits {
     80 			k = uint(i)
     81 			break
     82 		}
     83 	}
     84 	// The 1<<k chunks of m words must have N bits so that
     85 	// 2^N-1 is larger than x*y. That is, m<<k > words
     86 	m = words>>k + 1
     87 	return
     88 }
     89 
     90 // valueSize returns the length (in words) to use for polynomial
     91 // coefficients, to compute a correct product of polynomials P*Q
     92 // where deg(P*Q) < K (== 1<<k) and where coefficients of P and Q are
     93 // less than b^m (== 1 << (m*_W)).
     94 // The chosen length (in bits) must be a multiple of 1 << (k-extra).
     95 func valueSize(k uint, m int, extra uint) int {
     96 	// The coefficients of P*Q are less than b^(2m)*K
     97 	// so we need W * valueSize >= 2*m*W+K
     98 	n := 2*m*_W + int(k) // necessary bits
     99 	K := 1 << (k - extra)
    100 	if K < _W {
    101 		K = _W
    102 	}
    103 	n = ((n / K) + 1) * K // round to a multiple of K
    104 	return n / _W
    105 }
    106 
    107 // poly represents an integer via a polynomial in Z[x]/(x^K+1)
    108 // where K is the FFT length and b^m is the computation basis 1<<(m*_W).
    109 // If P = a[0] + a[1] x + ... a[n] x^(K-1), the associated natural number
    110 // is P(b^m).
    111 type poly struct {
    112 	k uint  // k is such that K = 1<<k.
    113 	m int   // the m such that P(b^m) is the original number.
    114 	a []nat // a slice of at most K m-word coefficients.
    115 }
    116 
    117 // polyFromNat slices the number x into a polynomial
    118 // with 1<<k coefficients made of m words.
    119 func polyFromNat(x nat, k uint, m int) poly {
    120 	p := poly{k: k, m: m}
    121 	length := len(x)/m + 1
    122 	p.a = make([]nat, length)
    123 	for i := range p.a {
    124 		if len(x) < m {
    125 			p.a[i] = make(nat, m)
    126 			copy(p.a[i], x)
    127 			break
    128 		}
    129 		p.a[i] = x[:m]
    130 		x = x[m:]
    131 	}
    132 	return p
    133 }
    134 
    135 // Int evaluates back a poly to its integer value.
    136 func (p *poly) Int() nat {
    137 	length := len(p.a)*p.m + 1
    138 	if na := len(p.a); na > 0 {
    139 		length += len(p.a[na-1])
    140 	}
    141 	n := make(nat, length)
    142 	m := p.m
    143 	np := n
    144 	for i := range p.a {
    145 		l := len(p.a[i])
    146 		c := addVV(np[:l], np[:l], p.a[i])
    147 		if np[l] < ^big.Word(0) {
    148 			np[l] += c
    149 		} else {
    150 			addVW(np[l:], np[l:], c)
    151 		}
    152 		np = np[m:]
    153 	}
    154 	n = trim(n)
    155 	return n
    156 }
    157 
    158 func trim(n nat) nat {
    159 	for i := range n {
    160 		if n[len(n)-1-i] != 0 {
    161 			return n[:len(n)-i]
    162 		}
    163 	}
    164 	return nil
    165 }
    166 
    167 // Mul multiplies p and q modulo X^K-1, where K = 1<<p.k.
    168 // The product is done via a Fourier transform.
    169 func (p *poly) Mul(q *poly) poly {
    170 	// extra=2 because:
    171 	// * some power of 2 is a K-th root of unity when n is a multiple of K/2.
    172 	// * 2 itself is a square (see fermat.ShiftHalf)
    173 	n := valueSize(p.k, p.m, 2)
    174 
    175 	pv, qv := p.Transform(n), q.Transform(n)
    176 	rv := pv.Mul(&qv)
    177 	r := rv.InvTransform()
    178 	r.m = p.m
    179 	return r
    180 }
    181 
    182 // A polValues represents the value of a poly at the powers of a
    183 // K-th root of unity θ=2^(l/2) in Z/(b^n+1)Z, where b^n = 2^(K/4*l).
    184 type polValues struct {
    185 	k      uint     // k is such that K = 1<<k.
    186 	n      int      // the length of coefficients, n*_W a multiple of K/4.
    187 	values []fermat // a slice of K (n+1)-word values
    188 }
    189 
    190 // Transform evaluates p at θ^i for i = 0...K-1, where
    191 // θ is a K-th primitive root of unity in Z/(b^n+1)Z.
    192 func (p *poly) Transform(n int) polValues {
    193 	k := p.k
    194 	inputbits := make([]big.Word, (n+1)<<k)
    195 	input := make([]fermat, 1<<k)
    196 	// Now computed q(ω^i) for i = 0 ... K-1
    197 	valbits := make([]big.Word, (n+1)<<k)
    198 	values := make([]fermat, 1<<k)
    199 	for i := range values {
    200 		input[i] = inputbits[i*(n+1) : (i+1)*(n+1)]
    201 		if i < len(p.a) {
    202 			copy(input[i], p.a[i])
    203 		}
    204 		values[i] = fermat(valbits[i*(n+1) : (i+1)*(n+1)])
    205 	}
    206 	fourier(values, input, false, n, k)
    207 	return polValues{k, n, values}
    208 }
    209 
    210 // InvTransform reconstructs p (modulo X^K - 1) from its
    211 // values at θ^i for i = 0..K-1.
    212 func (v *polValues) InvTransform() poly {
    213 	k, n := v.k, v.n
    214 
    215 	// Perform an inverse Fourier transform to recover p.
    216 	pbits := make([]big.Word, (n+1)<<k)
    217 	p := make([]fermat, 1<<k)
    218 	for i := range p {
    219 		p[i] = fermat(pbits[i*(n+1) : (i+1)*(n+1)])
    220 	}
    221 	fourier(p, v.values, true, n, k)
    222 	// Divide by K, and untwist q to recover p.
    223 	u := make(fermat, n+1)
    224 	a := make([]nat, 1<<k)
    225 	for i := range p {
    226 		u.Shift(p[i], -int(k))
    227 		copy(p[i], u)
    228 		a[i] = nat(p[i])
    229 	}
    230 	return poly{k: k, m: 0, a: a}
    231 }
    232 
    233 // NTransform evaluates p at θω^i for i = 0...K-1, where
    234 // θ is a (2K)-th primitive root of unity in Z/(b^n+1)Z
    235 // and ω = θ².
    236 func (p *poly) NTransform(n int) polValues {
    237 	k := p.k
    238 	if len(p.a) >= 1<<k {
    239 		panic("Transform: len(p.a) >= 1<<k")
    240 	}
    241 	// θ is represented as a shift.
    242 	θshift := (n * _W) >> k
    243 	// p(x) = a_0 + a_1 x + ... + a_{K-1} x^(K-1)
    244 	// p(θx) = q(x) where
    245 	// q(x) = a_0 + θa_1 x + ... + θ^(K-1) a_{K-1} x^(K-1)
    246 	//
    247 	// Twist p by θ to obtain q.
    248 	tbits := make([]big.Word, (n+1)<<k)
    249 	twisted := make([]fermat, 1<<k)
    250 	src := make(fermat, n+1)
    251 	for i := range twisted {
    252 		twisted[i] = fermat(tbits[i*(n+1) : (i+1)*(n+1)])
    253 		if i < len(p.a) {
    254 			for i := range src {
    255 				src[i] = 0
    256 			}
    257 			copy(src, p.a[i])
    258 			twisted[i].Shift(src, θshift*i)
    259 		}
    260 	}
    261 
    262 	// Now computed q(ω^i) for i = 0 ... K-1
    263 	valbits := make([]big.Word, (n+1)<<k)
    264 	values := make([]fermat, 1<<k)
    265 	for i := range values {
    266 		values[i] = fermat(valbits[i*(n+1) : (i+1)*(n+1)])
    267 	}
    268 	fourier(values, twisted, false, n, k)
    269 	return polValues{k, n, values}
    270 }
    271 
    272 // InvTransform reconstructs a polynomial from its values at
    273 // roots of x^K+1. The m field of the returned polynomial
    274 // is unspecified.
    275 func (v *polValues) InvNTransform() poly {
    276 	k := v.k
    277 	n := v.n
    278 	θshift := (n * _W) >> k
    279 
    280 	// Perform an inverse Fourier transform to recover q.
    281 	qbits := make([]big.Word, (n+1)<<k)
    282 	q := make([]fermat, 1<<k)
    283 	for i := range q {
    284 		q[i] = fermat(qbits[i*(n+1) : (i+1)*(n+1)])
    285 	}
    286 	fourier(q, v.values, true, n, k)
    287 
    288 	// Divide by K, and untwist q to recover p.
    289 	u := make(fermat, n+1)
    290 	a := make([]nat, 1<<k)
    291 	for i := range q {
    292 		u.Shift(q[i], -int(k)-i*θshift)
    293 		copy(q[i], u)
    294 		a[i] = nat(q[i])
    295 	}
    296 	return poly{k: k, m: 0, a: a}
    297 }
    298 
    299 // fourier performs an unnormalized Fourier transform
    300 // of src, a length 1<<k vector of numbers modulo b^n+1
    301 // where b = 1<<_W.
    302 func fourier(dst []fermat, src []fermat, backward bool, n int, k uint) {
    303 	var rec func(dst, src []fermat, size uint)
    304 	tmp := make(fermat, n+1)  // pre-allocate temporary variables.
    305 	tmp2 := make(fermat, n+1) // pre-allocate temporary variables.
    306 
    307 	// The recursion function of the FFT.
    308 	// The root of unity used in the transform is ω=1<<(ω2shift/2).
    309 	// The source array may use shifted indices (i.e. the i-th
    310 	// element is src[i << idxShift]).
    311 	rec = func(dst, src []fermat, size uint) {
    312 		idxShift := k - size
    313 		ω2shift := (4 * n * _W) >> size
    314 		if backward {
    315 			ω2shift = -ω2shift
    316 		}
    317 
    318 		// Easy cases.
    319 		if len(src[0]) != n+1 || len(dst[0]) != n+1 {
    320 			panic("len(src[0]) != n+1 || len(dst[0]) != n+1")
    321 		}
    322 		switch size {
    323 		case 0:
    324 			copy(dst[0], src[0])
    325 			return
    326 		case 1:
    327 			dst[0].Add(src[0], src[1<<idxShift]) // dst[0] = src[0] + src[1]
    328 			dst[1].Sub(src[0], src[1<<idxShift]) // dst[1] = src[0] - src[1]
    329 			return
    330 		}
    331 
    332 		// Let P(x) = src[0] + src[1<<idxShift] * x + ... + src[K-1 << idxShift] * x^(K-1)
    333 		// The P(x) = Q1(x²) + x*Q2(x²)
    334 		// where Q1's coefficients are src with indices shifted by 1
    335 		// where Q2's coefficients are src[1<<idxShift:] with indices shifted by 1
    336 
    337 		// Split destination vectors in halves.
    338 		dst1 := dst[:1<<(size-1)]
    339 		dst2 := dst[1<<(size-1):]
    340 		// Transform Q1 and Q2 in the halves.
    341 		rec(dst1, src, size-1)
    342 		rec(dst2, src[1<<idxShift:], size-1)
    343 
    344 		// Reconstruct P's transform from transforms of Q1 and Q2.
    345 		// dst[i]            is dst1[i] + ω^i * dst2[i]
    346 		// dst[i + 1<<(k-1)] is dst1[i] + ω^(i+K/2) * dst2[i]
    347 		//
    348 		for i := range dst1 {
    349 			tmp.ShiftHalf(dst2[i], i*ω2shift, tmp2) // ω^i * dst2[i]
    350 			dst2[i].Sub(dst1[i], tmp)
    351 			dst1[i].Add(dst1[i], tmp)
    352 		}
    353 	}
    354 	rec(dst, src, k)
    355 }
    356 
    357 // Mul returns the pointwise product of p and q.
    358 func (p *polValues) Mul(q *polValues) (r polValues) {
    359 	n := p.n
    360 	r.k, r.n = p.k, p.n
    361 	r.values = make([]fermat, len(p.values))
    362 	bits := make([]big.Word, len(p.values)*(n+1))
    363 	buf := make(fermat, 8*n)
    364 	for i := range r.values {
    365 		r.values[i] = bits[i*(n+1) : (i+1)*(n+1)]
    366 		z := buf.Mul(p.values[i], q.values[i])
    367 		copy(r.values[i], z)
    368 	}
    369 	return
    370 }