doc.go (10725B)
1 /* 2 Package dns implements a full featured interface to the Domain Name System. 3 Both server- and client-side programming is supported. The package allows 4 complete control over what is sent out to the DNS. The API follows the 5 less-is-more principle, by presenting a small, clean interface. 6 7 It supports (asynchronous) querying/replying, incoming/outgoing zone transfers, 8 TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. 9 10 Note that domain names MUST be fully qualified before sending them, unqualified 11 names in a message will result in a packing failure. 12 13 Resource records are native types. They are not stored in wire format. Basic 14 usage pattern for creating a new resource record: 15 16 r := new(dns.MX) 17 r.Hdr = dns.RR_Header{Name: "miek.nl.", Rrtype: dns.TypeMX, Class: dns.ClassINET, Ttl: 3600} 18 r.Preference = 10 19 r.Mx = "mx.miek.nl." 20 21 Or directly from a string: 22 23 mx, err := dns.NewRR("miek.nl. 3600 IN MX 10 mx.miek.nl.") 24 25 Or when the default origin (.) and TTL (3600) and class (IN) suit you: 26 27 mx, err := dns.NewRR("miek.nl MX 10 mx.miek.nl") 28 29 Or even: 30 31 mx, err := dns.NewRR("$ORIGIN nl.\nmiek 1H IN MX 10 mx.miek") 32 33 In the DNS messages are exchanged, these messages contain resource records 34 (sets). Use pattern for creating a message: 35 36 m := new(dns.Msg) 37 m.SetQuestion("miek.nl.", dns.TypeMX) 38 39 Or when not certain if the domain name is fully qualified: 40 41 m.SetQuestion(dns.Fqdn("miek.nl"), dns.TypeMX) 42 43 The message m is now a message with the question section set to ask the MX 44 records for the miek.nl. zone. 45 46 The following is slightly more verbose, but more flexible: 47 48 m1 := new(dns.Msg) 49 m1.Id = dns.Id() 50 m1.RecursionDesired = true 51 m1.Question = make([]dns.Question, 1) 52 m1.Question[0] = dns.Question{"miek.nl.", dns.TypeMX, dns.ClassINET} 53 54 After creating a message it can be sent. Basic use pattern for synchronous 55 querying the DNS at a server configured on 127.0.0.1 and port 53: 56 57 c := new(dns.Client) 58 in, rtt, err := c.Exchange(m1, "127.0.0.1:53") 59 60 Suppressing multiple outstanding queries (with the same question, type and 61 class) is as easy as setting: 62 63 c.SingleInflight = true 64 65 More advanced options are available using a net.Dialer and the corresponding API. 66 For example it is possible to set a timeout, or to specify a source IP address 67 and port to use for the connection: 68 69 c := new(dns.Client) 70 laddr := net.UDPAddr{ 71 IP: net.ParseIP("[::1]"), 72 Port: 12345, 73 Zone: "", 74 } 75 c.Dialer = &net.Dialer{ 76 Timeout: 200 * time.Millisecond, 77 LocalAddr: &laddr, 78 } 79 in, rtt, err := c.Exchange(m1, "8.8.8.8:53") 80 81 If these "advanced" features are not needed, a simple UDP query can be sent, 82 with: 83 84 in, err := dns.Exchange(m1, "127.0.0.1:53") 85 86 When this functions returns you will get DNS message. A DNS message consists 87 out of four sections. 88 The question section: in.Question, the answer section: in.Answer, 89 the authority section: in.Ns and the additional section: in.Extra. 90 91 Each of these sections (except the Question section) contain a []RR. Basic 92 use pattern for accessing the rdata of a TXT RR as the first RR in 93 the Answer section: 94 95 if t, ok := in.Answer[0].(*dns.TXT); ok { 96 // do something with t.Txt 97 } 98 99 # Domain Name and TXT Character String Representations 100 101 Both domain names and TXT character strings are converted to presentation form 102 both when unpacked and when converted to strings. 103 104 For TXT character strings, tabs, carriage returns and line feeds will be 105 converted to \t, \r and \n respectively. Back slashes and quotations marks will 106 be escaped. Bytes below 32 and above 127 will be converted to \DDD form. 107 108 For domain names, in addition to the above rules brackets, periods, spaces, 109 semicolons and the at symbol are escaped. 110 111 # DNSSEC 112 113 DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses 114 public key cryptography to sign resource records. The public keys are stored in 115 DNSKEY records and the signatures in RRSIG records. 116 117 Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) 118 bit to a request. 119 120 m := new(dns.Msg) 121 m.SetEdns0(4096, true) 122 123 Signature generation, signature verification and key generation are all supported. 124 125 # DYNAMIC UPDATES 126 127 Dynamic updates reuses the DNS message format, but renames three of the 128 sections. Question is Zone, Answer is Prerequisite, Authority is Update, only 129 the Additional is not renamed. See RFC 2136 for the gory details. 130 131 You can set a rather complex set of rules for the existence of absence of 132 certain resource records or names in a zone to specify if resource records 133 should be added or removed. The table from RFC 2136 supplemented with the Go 134 DNS function shows which functions exist to specify the prerequisites. 135 136 3.2.4 - Table Of Metavalues Used In Prerequisite Section 137 138 CLASS TYPE RDATA Meaning Function 139 -------------------------------------------------------------- 140 ANY ANY empty Name is in use dns.NameUsed 141 ANY rrset empty RRset exists (value indep) dns.RRsetUsed 142 NONE ANY empty Name is not in use dns.NameNotUsed 143 NONE rrset empty RRset does not exist dns.RRsetNotUsed 144 zone rrset rr RRset exists (value dep) dns.Used 145 146 The prerequisite section can also be left empty. If you have decided on the 147 prerequisites you can tell what RRs should be added or deleted. The next table 148 shows the options you have and what functions to call. 149 150 3.4.2.6 - Table Of Metavalues Used In Update Section 151 152 CLASS TYPE RDATA Meaning Function 153 --------------------------------------------------------------- 154 ANY ANY empty Delete all RRsets from name dns.RemoveName 155 ANY rrset empty Delete an RRset dns.RemoveRRset 156 NONE rrset rr Delete an RR from RRset dns.Remove 157 zone rrset rr Add to an RRset dns.Insert 158 159 # TRANSACTION SIGNATURE 160 161 An TSIG or transaction signature adds a HMAC TSIG record to each message sent. 162 The supported algorithms include: HmacSHA1, HmacSHA256 and HmacSHA512. 163 164 Basic use pattern when querying with a TSIG name "axfr." (note that these key names 165 must be fully qualified - as they are domain names) and the base64 secret 166 "so6ZGir4GPAqINNh9U5c3A==": 167 168 If an incoming message contains a TSIG record it MUST be the last record in 169 the additional section (RFC2845 3.2). This means that you should make the 170 call to SetTsig last, right before executing the query. If you make any 171 changes to the RRset after calling SetTsig() the signature will be incorrect. 172 173 c := new(dns.Client) 174 c.TsigSecret = map[string]string{"axfr.": "so6ZGir4GPAqINNh9U5c3A=="} 175 m := new(dns.Msg) 176 m.SetQuestion("miek.nl.", dns.TypeMX) 177 m.SetTsig("axfr.", dns.HmacSHA256, 300, time.Now().Unix()) 178 ... 179 // When sending the TSIG RR is calculated and filled in before sending 180 181 When requesting an zone transfer (almost all TSIG usage is when requesting zone 182 transfers), with TSIG, this is the basic use pattern. In this example we 183 request an AXFR for miek.nl. with TSIG key named "axfr." and secret 184 "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: 185 186 t := new(dns.Transfer) 187 m := new(dns.Msg) 188 t.TsigSecret = map[string]string{"axfr.": "so6ZGir4GPAqINNh9U5c3A=="} 189 m.SetAxfr("miek.nl.") 190 m.SetTsig("axfr.", dns.HmacSHA256, 300, time.Now().Unix()) 191 c, err := t.In(m, "176.58.119.54:53") 192 for r := range c { ... } 193 194 You can now read the records from the transfer as they come in. Each envelope 195 is checked with TSIG. If something is not correct an error is returned. 196 197 A custom TSIG implementation can be used. This requires additional code to 198 perform any session establishment and signature generation/verification. The 199 client must be configured with an implementation of the TsigProvider interface: 200 201 type Provider struct{} 202 203 func (*Provider) Generate(msg []byte, tsig *dns.TSIG) ([]byte, error) { 204 // Use tsig.Hdr.Name and tsig.Algorithm in your code to 205 // generate the MAC using msg as the payload. 206 } 207 208 func (*Provider) Verify(msg []byte, tsig *dns.TSIG) error { 209 // Use tsig.Hdr.Name and tsig.Algorithm in your code to verify 210 // that msg matches the value in tsig.MAC. 211 } 212 213 c := new(dns.Client) 214 c.TsigProvider = new(Provider) 215 m := new(dns.Msg) 216 m.SetQuestion("miek.nl.", dns.TypeMX) 217 m.SetTsig(keyname, dns.HmacSHA256, 300, time.Now().Unix()) 218 ... 219 // TSIG RR is calculated by calling your Generate method 220 221 Basic use pattern validating and replying to a message that has TSIG set. 222 223 server := &dns.Server{Addr: ":53", Net: "udp"} 224 server.TsigSecret = map[string]string{"axfr.": "so6ZGir4GPAqINNh9U5c3A=="} 225 go server.ListenAndServe() 226 dns.HandleFunc(".", handleRequest) 227 228 func handleRequest(w dns.ResponseWriter, r *dns.Msg) { 229 m := new(dns.Msg) 230 m.SetReply(r) 231 if r.IsTsig() != nil { 232 if w.TsigStatus() == nil { 233 // *Msg r has an TSIG record and it was validated 234 m.SetTsig("axfr.", dns.HmacSHA256, 300, time.Now().Unix()) 235 } else { 236 // *Msg r has an TSIG records and it was not validated 237 } 238 } 239 w.WriteMsg(m) 240 } 241 242 # PRIVATE RRS 243 244 RFC 6895 sets aside a range of type codes for private use. This range is 65,280 245 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these 246 can be used, before requesting an official type code from IANA. 247 248 See https://miek.nl/2014/september/21/idn-and-private-rr-in-go-dns/ for more 249 information. 250 251 # EDNS0 252 253 EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by 254 RFC 6891. It defines a new RR type, the OPT RR, which is then completely 255 abused. 256 257 Basic use pattern for creating an (empty) OPT RR: 258 259 o := new(dns.OPT) 260 o.Hdr.Name = "." // MUST be the root zone, per definition. 261 o.Hdr.Rrtype = dns.TypeOPT 262 263 The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. 264 Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and 265 EDNS0_SUBNET (RFC 7871). Note that these options may be combined in an OPT RR. 266 Basic use pattern for a server to check if (and which) options are set: 267 268 // o is a dns.OPT 269 for _, s := range o.Option { 270 switch e := s.(type) { 271 case *dns.EDNS0_NSID: 272 // do stuff with e.Nsid 273 case *dns.EDNS0_SUBNET: 274 // access e.Family, e.Address, etc. 275 } 276 } 277 278 SIG(0) 279 280 From RFC 2931: 281 282 SIG(0) provides protection for DNS transactions and requests .... 283 ... protection for glue records, DNS requests, protection for message headers 284 on requests and responses, and protection of the overall integrity of a response. 285 286 It works like TSIG, except that SIG(0) uses public key cryptography, instead of 287 the shared secret approach in TSIG. Supported algorithms: ECDSAP256SHA256, 288 ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. 289 290 Signing subsequent messages in multi-message sessions is not implemented. 291 */ 292 package dns