gtsocial-umbx

Unnamed repository; edit this file 'description' to name the repository.
Log | Files | Refs | README | LICENSE

deflate.go (28005B)


      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Copyright (c) 2015 Klaus Post
      3 // Use of this source code is governed by a BSD-style
      4 // license that can be found in the LICENSE file.
      5 
      6 package flate
      7 
      8 import (
      9 	"encoding/binary"
     10 	"fmt"
     11 	"io"
     12 	"math"
     13 )
     14 
     15 const (
     16 	NoCompression      = 0
     17 	BestSpeed          = 1
     18 	BestCompression    = 9
     19 	DefaultCompression = -1
     20 
     21 	// HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman
     22 	// entropy encoding. This mode is useful in compressing data that has
     23 	// already been compressed with an LZ style algorithm (e.g. Snappy or LZ4)
     24 	// that lacks an entropy encoder. Compression gains are achieved when
     25 	// certain bytes in the input stream occur more frequently than others.
     26 	//
     27 	// Note that HuffmanOnly produces a compressed output that is
     28 	// RFC 1951 compliant. That is, any valid DEFLATE decompressor will
     29 	// continue to be able to decompress this output.
     30 	HuffmanOnly         = -2
     31 	ConstantCompression = HuffmanOnly // compatibility alias.
     32 
     33 	logWindowSize    = 15
     34 	windowSize       = 1 << logWindowSize
     35 	windowMask       = windowSize - 1
     36 	logMaxOffsetSize = 15  // Standard DEFLATE
     37 	minMatchLength   = 4   // The smallest match that the compressor looks for
     38 	maxMatchLength   = 258 // The longest match for the compressor
     39 	minOffsetSize    = 1   // The shortest offset that makes any sense
     40 
     41 	// The maximum number of tokens we will encode at the time.
     42 	// Smaller sizes usually creates less optimal blocks.
     43 	// Bigger can make context switching slow.
     44 	// We use this for levels 7-9, so we make it big.
     45 	maxFlateBlockTokens = 1 << 15
     46 	maxStoreBlockSize   = 65535
     47 	hashBits            = 17 // After 17 performance degrades
     48 	hashSize            = 1 << hashBits
     49 	hashMask            = (1 << hashBits) - 1
     50 	hashShift           = (hashBits + minMatchLength - 1) / minMatchLength
     51 	maxHashOffset       = 1 << 28
     52 
     53 	skipNever = math.MaxInt32
     54 
     55 	debugDeflate = false
     56 )
     57 
     58 type compressionLevel struct {
     59 	good, lazy, nice, chain, fastSkipHashing, level int
     60 }
     61 
     62 // Compression levels have been rebalanced from zlib deflate defaults
     63 // to give a bigger spread in speed and compression.
     64 // See https://blog.klauspost.com/rebalancing-deflate-compression-levels/
     65 var levels = []compressionLevel{
     66 	{}, // 0
     67 	// Level 1-6 uses specialized algorithm - values not used
     68 	{0, 0, 0, 0, 0, 1},
     69 	{0, 0, 0, 0, 0, 2},
     70 	{0, 0, 0, 0, 0, 3},
     71 	{0, 0, 0, 0, 0, 4},
     72 	{0, 0, 0, 0, 0, 5},
     73 	{0, 0, 0, 0, 0, 6},
     74 	// Levels 7-9 use increasingly more lazy matching
     75 	// and increasingly stringent conditions for "good enough".
     76 	{8, 12, 16, 24, skipNever, 7},
     77 	{16, 30, 40, 64, skipNever, 8},
     78 	{32, 258, 258, 1024, skipNever, 9},
     79 }
     80 
     81 // advancedState contains state for the advanced levels, with bigger hash tables, etc.
     82 type advancedState struct {
     83 	// deflate state
     84 	length         int
     85 	offset         int
     86 	maxInsertIndex int
     87 	chainHead      int
     88 	hashOffset     int
     89 
     90 	ii uint16 // position of last match, intended to overflow to reset.
     91 
     92 	// input window: unprocessed data is window[index:windowEnd]
     93 	index          int
     94 	estBitsPerByte int
     95 	hashMatch      [maxMatchLength + minMatchLength]uint32
     96 
     97 	// Input hash chains
     98 	// hashHead[hashValue] contains the largest inputIndex with the specified hash value
     99 	// If hashHead[hashValue] is within the current window, then
    100 	// hashPrev[hashHead[hashValue] & windowMask] contains the previous index
    101 	// with the same hash value.
    102 	hashHead [hashSize]uint32
    103 	hashPrev [windowSize]uint32
    104 }
    105 
    106 type compressor struct {
    107 	compressionLevel
    108 
    109 	h *huffmanEncoder
    110 	w *huffmanBitWriter
    111 
    112 	// compression algorithm
    113 	fill func(*compressor, []byte) int // copy data to window
    114 	step func(*compressor)             // process window
    115 
    116 	window     []byte
    117 	windowEnd  int
    118 	blockStart int // window index where current tokens start
    119 	err        error
    120 
    121 	// queued output tokens
    122 	tokens tokens
    123 	fast   fastEnc
    124 	state  *advancedState
    125 
    126 	sync          bool // requesting flush
    127 	byteAvailable bool // if true, still need to process window[index-1].
    128 }
    129 
    130 func (d *compressor) fillDeflate(b []byte) int {
    131 	s := d.state
    132 	if s.index >= 2*windowSize-(minMatchLength+maxMatchLength) {
    133 		// shift the window by windowSize
    134 		//copy(d.window[:], d.window[windowSize:2*windowSize])
    135 		*(*[windowSize]byte)(d.window) = *(*[windowSize]byte)(d.window[windowSize:])
    136 		s.index -= windowSize
    137 		d.windowEnd -= windowSize
    138 		if d.blockStart >= windowSize {
    139 			d.blockStart -= windowSize
    140 		} else {
    141 			d.blockStart = math.MaxInt32
    142 		}
    143 		s.hashOffset += windowSize
    144 		if s.hashOffset > maxHashOffset {
    145 			delta := s.hashOffset - 1
    146 			s.hashOffset -= delta
    147 			s.chainHead -= delta
    148 			// Iterate over slices instead of arrays to avoid copying
    149 			// the entire table onto the stack (Issue #18625).
    150 			for i, v := range s.hashPrev[:] {
    151 				if int(v) > delta {
    152 					s.hashPrev[i] = uint32(int(v) - delta)
    153 				} else {
    154 					s.hashPrev[i] = 0
    155 				}
    156 			}
    157 			for i, v := range s.hashHead[:] {
    158 				if int(v) > delta {
    159 					s.hashHead[i] = uint32(int(v) - delta)
    160 				} else {
    161 					s.hashHead[i] = 0
    162 				}
    163 			}
    164 		}
    165 	}
    166 	n := copy(d.window[d.windowEnd:], b)
    167 	d.windowEnd += n
    168 	return n
    169 }
    170 
    171 func (d *compressor) writeBlock(tok *tokens, index int, eof bool) error {
    172 	if index > 0 || eof {
    173 		var window []byte
    174 		if d.blockStart <= index {
    175 			window = d.window[d.blockStart:index]
    176 		}
    177 		d.blockStart = index
    178 		//d.w.writeBlock(tok, eof, window)
    179 		d.w.writeBlockDynamic(tok, eof, window, d.sync)
    180 		return d.w.err
    181 	}
    182 	return nil
    183 }
    184 
    185 // writeBlockSkip writes the current block and uses the number of tokens
    186 // to determine if the block should be stored on no matches, or
    187 // only huffman encoded.
    188 func (d *compressor) writeBlockSkip(tok *tokens, index int, eof bool) error {
    189 	if index > 0 || eof {
    190 		if d.blockStart <= index {
    191 			window := d.window[d.blockStart:index]
    192 			// If we removed less than a 64th of all literals
    193 			// we huffman compress the block.
    194 			if int(tok.n) > len(window)-int(tok.n>>6) {
    195 				d.w.writeBlockHuff(eof, window, d.sync)
    196 			} else {
    197 				// Write a dynamic huffman block.
    198 				d.w.writeBlockDynamic(tok, eof, window, d.sync)
    199 			}
    200 		} else {
    201 			d.w.writeBlock(tok, eof, nil)
    202 		}
    203 		d.blockStart = index
    204 		return d.w.err
    205 	}
    206 	return nil
    207 }
    208 
    209 // fillWindow will fill the current window with the supplied
    210 // dictionary and calculate all hashes.
    211 // This is much faster than doing a full encode.
    212 // Should only be used after a start/reset.
    213 func (d *compressor) fillWindow(b []byte) {
    214 	// Do not fill window if we are in store-only or huffman mode.
    215 	if d.level <= 0 {
    216 		return
    217 	}
    218 	if d.fast != nil {
    219 		// encode the last data, but discard the result
    220 		if len(b) > maxMatchOffset {
    221 			b = b[len(b)-maxMatchOffset:]
    222 		}
    223 		d.fast.Encode(&d.tokens, b)
    224 		d.tokens.Reset()
    225 		return
    226 	}
    227 	s := d.state
    228 	// If we are given too much, cut it.
    229 	if len(b) > windowSize {
    230 		b = b[len(b)-windowSize:]
    231 	}
    232 	// Add all to window.
    233 	n := copy(d.window[d.windowEnd:], b)
    234 
    235 	// Calculate 256 hashes at the time (more L1 cache hits)
    236 	loops := (n + 256 - minMatchLength) / 256
    237 	for j := 0; j < loops; j++ {
    238 		startindex := j * 256
    239 		end := startindex + 256 + minMatchLength - 1
    240 		if end > n {
    241 			end = n
    242 		}
    243 		tocheck := d.window[startindex:end]
    244 		dstSize := len(tocheck) - minMatchLength + 1
    245 
    246 		if dstSize <= 0 {
    247 			continue
    248 		}
    249 
    250 		dst := s.hashMatch[:dstSize]
    251 		bulkHash4(tocheck, dst)
    252 		var newH uint32
    253 		for i, val := range dst {
    254 			di := i + startindex
    255 			newH = val & hashMask
    256 			// Get previous value with the same hash.
    257 			// Our chain should point to the previous value.
    258 			s.hashPrev[di&windowMask] = s.hashHead[newH]
    259 			// Set the head of the hash chain to us.
    260 			s.hashHead[newH] = uint32(di + s.hashOffset)
    261 		}
    262 	}
    263 	// Update window information.
    264 	d.windowEnd += n
    265 	s.index = n
    266 }
    267 
    268 // Try to find a match starting at index whose length is greater than prevSize.
    269 // We only look at chainCount possibilities before giving up.
    270 // pos = s.index, prevHead = s.chainHead-s.hashOffset, prevLength=minMatchLength-1, lookahead
    271 func (d *compressor) findMatch(pos int, prevHead int, lookahead int) (length, offset int, ok bool) {
    272 	minMatchLook := maxMatchLength
    273 	if lookahead < minMatchLook {
    274 		minMatchLook = lookahead
    275 	}
    276 
    277 	win := d.window[0 : pos+minMatchLook]
    278 
    279 	// We quit when we get a match that's at least nice long
    280 	nice := len(win) - pos
    281 	if d.nice < nice {
    282 		nice = d.nice
    283 	}
    284 
    285 	// If we've got a match that's good enough, only look in 1/4 the chain.
    286 	tries := d.chain
    287 	length = minMatchLength - 1
    288 
    289 	wEnd := win[pos+length]
    290 	wPos := win[pos:]
    291 	minIndex := pos - windowSize
    292 	if minIndex < 0 {
    293 		minIndex = 0
    294 	}
    295 	offset = 0
    296 
    297 	if d.chain < 100 {
    298 		for i := prevHead; tries > 0; tries-- {
    299 			if wEnd == win[i+length] {
    300 				n := matchLen(win[i:i+minMatchLook], wPos)
    301 				if n > length {
    302 					length = n
    303 					offset = pos - i
    304 					ok = true
    305 					if n >= nice {
    306 						// The match is good enough that we don't try to find a better one.
    307 						break
    308 					}
    309 					wEnd = win[pos+n]
    310 				}
    311 			}
    312 			if i <= minIndex {
    313 				// hashPrev[i & windowMask] has already been overwritten, so stop now.
    314 				break
    315 			}
    316 			i = int(d.state.hashPrev[i&windowMask]) - d.state.hashOffset
    317 			if i < minIndex {
    318 				break
    319 			}
    320 		}
    321 		return
    322 	}
    323 
    324 	// Minimum gain to accept a match.
    325 	cGain := 4
    326 
    327 	// Some like it higher (CSV), some like it lower (JSON)
    328 	const baseCost = 3
    329 	// Base is 4 bytes at with an additional cost.
    330 	// Matches must be better than this.
    331 
    332 	for i := prevHead; tries > 0; tries-- {
    333 		if wEnd == win[i+length] {
    334 			n := matchLen(win[i:i+minMatchLook], wPos)
    335 			if n > length {
    336 				// Calculate gain. Estimate
    337 				newGain := d.h.bitLengthRaw(wPos[:n]) - int(offsetExtraBits[offsetCode(uint32(pos-i))]) - baseCost - int(lengthExtraBits[lengthCodes[(n-3)&255]])
    338 
    339 				//fmt.Println("gain:", newGain, "prev:", cGain, "raw:", d.h.bitLengthRaw(wPos[:n]), "this-len:", n, "prev-len:", length)
    340 				if newGain > cGain {
    341 					length = n
    342 					offset = pos - i
    343 					cGain = newGain
    344 					ok = true
    345 					if n >= nice {
    346 						// The match is good enough that we don't try to find a better one.
    347 						break
    348 					}
    349 					wEnd = win[pos+n]
    350 				}
    351 			}
    352 		}
    353 		if i <= minIndex {
    354 			// hashPrev[i & windowMask] has already been overwritten, so stop now.
    355 			break
    356 		}
    357 		i = int(d.state.hashPrev[i&windowMask]) - d.state.hashOffset
    358 		if i < minIndex {
    359 			break
    360 		}
    361 	}
    362 	return
    363 }
    364 
    365 func (d *compressor) writeStoredBlock(buf []byte) error {
    366 	if d.w.writeStoredHeader(len(buf), false); d.w.err != nil {
    367 		return d.w.err
    368 	}
    369 	d.w.writeBytes(buf)
    370 	return d.w.err
    371 }
    372 
    373 // hash4 returns a hash representation of the first 4 bytes
    374 // of the supplied slice.
    375 // The caller must ensure that len(b) >= 4.
    376 func hash4(b []byte) uint32 {
    377 	return hash4u(binary.LittleEndian.Uint32(b), hashBits)
    378 }
    379 
    380 // hash4 returns the hash of u to fit in a hash table with h bits.
    381 // Preferably h should be a constant and should always be <32.
    382 func hash4u(u uint32, h uint8) uint32 {
    383 	return (u * prime4bytes) >> (32 - h)
    384 }
    385 
    386 // bulkHash4 will compute hashes using the same
    387 // algorithm as hash4
    388 func bulkHash4(b []byte, dst []uint32) {
    389 	if len(b) < 4 {
    390 		return
    391 	}
    392 	hb := binary.LittleEndian.Uint32(b)
    393 
    394 	dst[0] = hash4u(hb, hashBits)
    395 	end := len(b) - 4 + 1
    396 	for i := 1; i < end; i++ {
    397 		hb = (hb >> 8) | uint32(b[i+3])<<24
    398 		dst[i] = hash4u(hb, hashBits)
    399 	}
    400 }
    401 
    402 func (d *compressor) initDeflate() {
    403 	d.window = make([]byte, 2*windowSize)
    404 	d.byteAvailable = false
    405 	d.err = nil
    406 	if d.state == nil {
    407 		return
    408 	}
    409 	s := d.state
    410 	s.index = 0
    411 	s.hashOffset = 1
    412 	s.length = minMatchLength - 1
    413 	s.offset = 0
    414 	s.chainHead = -1
    415 }
    416 
    417 // deflateLazy is the same as deflate, but with d.fastSkipHashing == skipNever,
    418 // meaning it always has lazy matching on.
    419 func (d *compressor) deflateLazy() {
    420 	s := d.state
    421 	// Sanity enables additional runtime tests.
    422 	// It's intended to be used during development
    423 	// to supplement the currently ad-hoc unit tests.
    424 	const sanity = debugDeflate
    425 
    426 	if d.windowEnd-s.index < minMatchLength+maxMatchLength && !d.sync {
    427 		return
    428 	}
    429 	if d.windowEnd != s.index && d.chain > 100 {
    430 		// Get literal huffman coder.
    431 		if d.h == nil {
    432 			d.h = newHuffmanEncoder(maxFlateBlockTokens)
    433 		}
    434 		var tmp [256]uint16
    435 		for _, v := range d.window[s.index:d.windowEnd] {
    436 			tmp[v]++
    437 		}
    438 		d.h.generate(tmp[:], 15)
    439 	}
    440 
    441 	s.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
    442 
    443 	for {
    444 		if sanity && s.index > d.windowEnd {
    445 			panic("index > windowEnd")
    446 		}
    447 		lookahead := d.windowEnd - s.index
    448 		if lookahead < minMatchLength+maxMatchLength {
    449 			if !d.sync {
    450 				return
    451 			}
    452 			if sanity && s.index > d.windowEnd {
    453 				panic("index > windowEnd")
    454 			}
    455 			if lookahead == 0 {
    456 				// Flush current output block if any.
    457 				if d.byteAvailable {
    458 					// There is still one pending token that needs to be flushed
    459 					d.tokens.AddLiteral(d.window[s.index-1])
    460 					d.byteAvailable = false
    461 				}
    462 				if d.tokens.n > 0 {
    463 					if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
    464 						return
    465 					}
    466 					d.tokens.Reset()
    467 				}
    468 				return
    469 			}
    470 		}
    471 		if s.index < s.maxInsertIndex {
    472 			// Update the hash
    473 			hash := hash4(d.window[s.index:])
    474 			ch := s.hashHead[hash]
    475 			s.chainHead = int(ch)
    476 			s.hashPrev[s.index&windowMask] = ch
    477 			s.hashHead[hash] = uint32(s.index + s.hashOffset)
    478 		}
    479 		prevLength := s.length
    480 		prevOffset := s.offset
    481 		s.length = minMatchLength - 1
    482 		s.offset = 0
    483 		minIndex := s.index - windowSize
    484 		if minIndex < 0 {
    485 			minIndex = 0
    486 		}
    487 
    488 		if s.chainHead-s.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy {
    489 			if newLength, newOffset, ok := d.findMatch(s.index, s.chainHead-s.hashOffset, lookahead); ok {
    490 				s.length = newLength
    491 				s.offset = newOffset
    492 			}
    493 		}
    494 
    495 		if prevLength >= minMatchLength && s.length <= prevLength {
    496 			// No better match, but check for better match at end...
    497 			//
    498 			// Skip forward a number of bytes.
    499 			// Offset of 2 seems to yield best results. 3 is sometimes better.
    500 			const checkOff = 2
    501 
    502 			// Check all, except full length
    503 			if prevLength < maxMatchLength-checkOff {
    504 				prevIndex := s.index - 1
    505 				if prevIndex+prevLength < s.maxInsertIndex {
    506 					end := lookahead
    507 					if lookahead > maxMatchLength+checkOff {
    508 						end = maxMatchLength + checkOff
    509 					}
    510 					end += prevIndex
    511 
    512 					// Hash at match end.
    513 					h := hash4(d.window[prevIndex+prevLength:])
    514 					ch2 := int(s.hashHead[h]) - s.hashOffset - prevLength
    515 					if prevIndex-ch2 != prevOffset && ch2 > minIndex+checkOff {
    516 						length := matchLen(d.window[prevIndex+checkOff:end], d.window[ch2+checkOff:])
    517 						// It seems like a pure length metric is best.
    518 						if length > prevLength {
    519 							prevLength = length
    520 							prevOffset = prevIndex - ch2
    521 
    522 							// Extend back...
    523 							for i := checkOff - 1; i >= 0; i-- {
    524 								if prevLength >= maxMatchLength || d.window[prevIndex+i] != d.window[ch2+i] {
    525 									// Emit tokens we "owe"
    526 									for j := 0; j <= i; j++ {
    527 										d.tokens.AddLiteral(d.window[prevIndex+j])
    528 										if d.tokens.n == maxFlateBlockTokens {
    529 											// The block includes the current character
    530 											if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
    531 												return
    532 											}
    533 											d.tokens.Reset()
    534 										}
    535 										s.index++
    536 										if s.index < s.maxInsertIndex {
    537 											h := hash4(d.window[s.index:])
    538 											ch := s.hashHead[h]
    539 											s.chainHead = int(ch)
    540 											s.hashPrev[s.index&windowMask] = ch
    541 											s.hashHead[h] = uint32(s.index + s.hashOffset)
    542 										}
    543 									}
    544 									break
    545 								} else {
    546 									prevLength++
    547 								}
    548 							}
    549 						} else if false {
    550 							// Check one further ahead.
    551 							// Only rarely better, disabled for now.
    552 							prevIndex++
    553 							h := hash4(d.window[prevIndex+prevLength:])
    554 							ch2 := int(s.hashHead[h]) - s.hashOffset - prevLength
    555 							if prevIndex-ch2 != prevOffset && ch2 > minIndex+checkOff {
    556 								length := matchLen(d.window[prevIndex+checkOff:end], d.window[ch2+checkOff:])
    557 								// It seems like a pure length metric is best.
    558 								if length > prevLength+checkOff {
    559 									prevLength = length
    560 									prevOffset = prevIndex - ch2
    561 									prevIndex--
    562 
    563 									// Extend back...
    564 									for i := checkOff; i >= 0; i-- {
    565 										if prevLength >= maxMatchLength || d.window[prevIndex+i] != d.window[ch2+i-1] {
    566 											// Emit tokens we "owe"
    567 											for j := 0; j <= i; j++ {
    568 												d.tokens.AddLiteral(d.window[prevIndex+j])
    569 												if d.tokens.n == maxFlateBlockTokens {
    570 													// The block includes the current character
    571 													if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
    572 														return
    573 													}
    574 													d.tokens.Reset()
    575 												}
    576 												s.index++
    577 												if s.index < s.maxInsertIndex {
    578 													h := hash4(d.window[s.index:])
    579 													ch := s.hashHead[h]
    580 													s.chainHead = int(ch)
    581 													s.hashPrev[s.index&windowMask] = ch
    582 													s.hashHead[h] = uint32(s.index + s.hashOffset)
    583 												}
    584 											}
    585 											break
    586 										} else {
    587 											prevLength++
    588 										}
    589 									}
    590 								}
    591 							}
    592 						}
    593 					}
    594 				}
    595 			}
    596 			// There was a match at the previous step, and the current match is
    597 			// not better. Output the previous match.
    598 			d.tokens.AddMatch(uint32(prevLength-3), uint32(prevOffset-minOffsetSize))
    599 
    600 			// Insert in the hash table all strings up to the end of the match.
    601 			// index and index-1 are already inserted. If there is not enough
    602 			// lookahead, the last two strings are not inserted into the hash
    603 			// table.
    604 			newIndex := s.index + prevLength - 1
    605 			// Calculate missing hashes
    606 			end := newIndex
    607 			if end > s.maxInsertIndex {
    608 				end = s.maxInsertIndex
    609 			}
    610 			end += minMatchLength - 1
    611 			startindex := s.index + 1
    612 			if startindex > s.maxInsertIndex {
    613 				startindex = s.maxInsertIndex
    614 			}
    615 			tocheck := d.window[startindex:end]
    616 			dstSize := len(tocheck) - minMatchLength + 1
    617 			if dstSize > 0 {
    618 				dst := s.hashMatch[:dstSize]
    619 				bulkHash4(tocheck, dst)
    620 				var newH uint32
    621 				for i, val := range dst {
    622 					di := i + startindex
    623 					newH = val & hashMask
    624 					// Get previous value with the same hash.
    625 					// Our chain should point to the previous value.
    626 					s.hashPrev[di&windowMask] = s.hashHead[newH]
    627 					// Set the head of the hash chain to us.
    628 					s.hashHead[newH] = uint32(di + s.hashOffset)
    629 				}
    630 			}
    631 
    632 			s.index = newIndex
    633 			d.byteAvailable = false
    634 			s.length = minMatchLength - 1
    635 			if d.tokens.n == maxFlateBlockTokens {
    636 				// The block includes the current character
    637 				if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
    638 					return
    639 				}
    640 				d.tokens.Reset()
    641 			}
    642 			s.ii = 0
    643 		} else {
    644 			// Reset, if we got a match this run.
    645 			if s.length >= minMatchLength {
    646 				s.ii = 0
    647 			}
    648 			// We have a byte waiting. Emit it.
    649 			if d.byteAvailable {
    650 				s.ii++
    651 				d.tokens.AddLiteral(d.window[s.index-1])
    652 				if d.tokens.n == maxFlateBlockTokens {
    653 					if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
    654 						return
    655 					}
    656 					d.tokens.Reset()
    657 				}
    658 				s.index++
    659 
    660 				// If we have a long run of no matches, skip additional bytes
    661 				// Resets when s.ii overflows after 64KB.
    662 				if n := int(s.ii) - d.chain; n > 0 {
    663 					n = 1 + int(n>>6)
    664 					for j := 0; j < n; j++ {
    665 						if s.index >= d.windowEnd-1 {
    666 							break
    667 						}
    668 						d.tokens.AddLiteral(d.window[s.index-1])
    669 						if d.tokens.n == maxFlateBlockTokens {
    670 							if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
    671 								return
    672 							}
    673 							d.tokens.Reset()
    674 						}
    675 						// Index...
    676 						if s.index < s.maxInsertIndex {
    677 							h := hash4(d.window[s.index:])
    678 							ch := s.hashHead[h]
    679 							s.chainHead = int(ch)
    680 							s.hashPrev[s.index&windowMask] = ch
    681 							s.hashHead[h] = uint32(s.index + s.hashOffset)
    682 						}
    683 						s.index++
    684 					}
    685 					// Flush last byte
    686 					d.tokens.AddLiteral(d.window[s.index-1])
    687 					d.byteAvailable = false
    688 					// s.length = minMatchLength - 1 // not needed, since s.ii is reset above, so it should never be > minMatchLength
    689 					if d.tokens.n == maxFlateBlockTokens {
    690 						if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
    691 							return
    692 						}
    693 						d.tokens.Reset()
    694 					}
    695 				}
    696 			} else {
    697 				s.index++
    698 				d.byteAvailable = true
    699 			}
    700 		}
    701 	}
    702 }
    703 
    704 func (d *compressor) store() {
    705 	if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) {
    706 		d.err = d.writeStoredBlock(d.window[:d.windowEnd])
    707 		d.windowEnd = 0
    708 	}
    709 }
    710 
    711 // fillWindow will fill the buffer with data for huffman-only compression.
    712 // The number of bytes copied is returned.
    713 func (d *compressor) fillBlock(b []byte) int {
    714 	n := copy(d.window[d.windowEnd:], b)
    715 	d.windowEnd += n
    716 	return n
    717 }
    718 
    719 // storeHuff will compress and store the currently added data,
    720 // if enough has been accumulated or we at the end of the stream.
    721 // Any error that occurred will be in d.err
    722 func (d *compressor) storeHuff() {
    723 	if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 {
    724 		return
    725 	}
    726 	d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync)
    727 	d.err = d.w.err
    728 	d.windowEnd = 0
    729 }
    730 
    731 // storeFast will compress and store the currently added data,
    732 // if enough has been accumulated or we at the end of the stream.
    733 // Any error that occurred will be in d.err
    734 func (d *compressor) storeFast() {
    735 	// We only compress if we have maxStoreBlockSize.
    736 	if d.windowEnd < len(d.window) {
    737 		if !d.sync {
    738 			return
    739 		}
    740 		// Handle extremely small sizes.
    741 		if d.windowEnd < 128 {
    742 			if d.windowEnd == 0 {
    743 				return
    744 			}
    745 			if d.windowEnd <= 32 {
    746 				d.err = d.writeStoredBlock(d.window[:d.windowEnd])
    747 			} else {
    748 				d.w.writeBlockHuff(false, d.window[:d.windowEnd], true)
    749 				d.err = d.w.err
    750 			}
    751 			d.tokens.Reset()
    752 			d.windowEnd = 0
    753 			d.fast.Reset()
    754 			return
    755 		}
    756 	}
    757 
    758 	d.fast.Encode(&d.tokens, d.window[:d.windowEnd])
    759 	// If we made zero matches, store the block as is.
    760 	if d.tokens.n == 0 {
    761 		d.err = d.writeStoredBlock(d.window[:d.windowEnd])
    762 		// If we removed less than 1/16th, huffman compress the block.
    763 	} else if int(d.tokens.n) > d.windowEnd-(d.windowEnd>>4) {
    764 		d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync)
    765 		d.err = d.w.err
    766 	} else {
    767 		d.w.writeBlockDynamic(&d.tokens, false, d.window[:d.windowEnd], d.sync)
    768 		d.err = d.w.err
    769 	}
    770 	d.tokens.Reset()
    771 	d.windowEnd = 0
    772 }
    773 
    774 // write will add input byte to the stream.
    775 // Unless an error occurs all bytes will be consumed.
    776 func (d *compressor) write(b []byte) (n int, err error) {
    777 	if d.err != nil {
    778 		return 0, d.err
    779 	}
    780 	n = len(b)
    781 	for len(b) > 0 {
    782 		if d.windowEnd == len(d.window) || d.sync {
    783 			d.step(d)
    784 		}
    785 		b = b[d.fill(d, b):]
    786 		if d.err != nil {
    787 			return 0, d.err
    788 		}
    789 	}
    790 	return n, d.err
    791 }
    792 
    793 func (d *compressor) syncFlush() error {
    794 	d.sync = true
    795 	if d.err != nil {
    796 		return d.err
    797 	}
    798 	d.step(d)
    799 	if d.err == nil {
    800 		d.w.writeStoredHeader(0, false)
    801 		d.w.flush()
    802 		d.err = d.w.err
    803 	}
    804 	d.sync = false
    805 	return d.err
    806 }
    807 
    808 func (d *compressor) init(w io.Writer, level int) (err error) {
    809 	d.w = newHuffmanBitWriter(w)
    810 
    811 	switch {
    812 	case level == NoCompression:
    813 		d.window = make([]byte, maxStoreBlockSize)
    814 		d.fill = (*compressor).fillBlock
    815 		d.step = (*compressor).store
    816 	case level == ConstantCompression:
    817 		d.w.logNewTablePenalty = 10
    818 		d.window = make([]byte, 32<<10)
    819 		d.fill = (*compressor).fillBlock
    820 		d.step = (*compressor).storeHuff
    821 	case level == DefaultCompression:
    822 		level = 5
    823 		fallthrough
    824 	case level >= 1 && level <= 6:
    825 		d.w.logNewTablePenalty = 7
    826 		d.fast = newFastEnc(level)
    827 		d.window = make([]byte, maxStoreBlockSize)
    828 		d.fill = (*compressor).fillBlock
    829 		d.step = (*compressor).storeFast
    830 	case 7 <= level && level <= 9:
    831 		d.w.logNewTablePenalty = 8
    832 		d.state = &advancedState{}
    833 		d.compressionLevel = levels[level]
    834 		d.initDeflate()
    835 		d.fill = (*compressor).fillDeflate
    836 		d.step = (*compressor).deflateLazy
    837 	default:
    838 		return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level)
    839 	}
    840 	d.level = level
    841 	return nil
    842 }
    843 
    844 // reset the state of the compressor.
    845 func (d *compressor) reset(w io.Writer) {
    846 	d.w.reset(w)
    847 	d.sync = false
    848 	d.err = nil
    849 	// We only need to reset a few things for Snappy.
    850 	if d.fast != nil {
    851 		d.fast.Reset()
    852 		d.windowEnd = 0
    853 		d.tokens.Reset()
    854 		return
    855 	}
    856 	switch d.compressionLevel.chain {
    857 	case 0:
    858 		// level was NoCompression or ConstantCompresssion.
    859 		d.windowEnd = 0
    860 	default:
    861 		s := d.state
    862 		s.chainHead = -1
    863 		for i := range s.hashHead {
    864 			s.hashHead[i] = 0
    865 		}
    866 		for i := range s.hashPrev {
    867 			s.hashPrev[i] = 0
    868 		}
    869 		s.hashOffset = 1
    870 		s.index, d.windowEnd = 0, 0
    871 		d.blockStart, d.byteAvailable = 0, false
    872 		d.tokens.Reset()
    873 		s.length = minMatchLength - 1
    874 		s.offset = 0
    875 		s.ii = 0
    876 		s.maxInsertIndex = 0
    877 	}
    878 }
    879 
    880 func (d *compressor) close() error {
    881 	if d.err != nil {
    882 		return d.err
    883 	}
    884 	d.sync = true
    885 	d.step(d)
    886 	if d.err != nil {
    887 		return d.err
    888 	}
    889 	if d.w.writeStoredHeader(0, true); d.w.err != nil {
    890 		return d.w.err
    891 	}
    892 	d.w.flush()
    893 	d.w.reset(nil)
    894 	return d.w.err
    895 }
    896 
    897 // NewWriter returns a new Writer compressing data at the given level.
    898 // Following zlib, levels range from 1 (BestSpeed) to 9 (BestCompression);
    899 // higher levels typically run slower but compress more.
    900 // Level 0 (NoCompression) does not attempt any compression; it only adds the
    901 // necessary DEFLATE framing.
    902 // Level -1 (DefaultCompression) uses the default compression level.
    903 // Level -2 (ConstantCompression) will use Huffman compression only, giving
    904 // a very fast compression for all types of input, but sacrificing considerable
    905 // compression efficiency.
    906 //
    907 // If level is in the range [-2, 9] then the error returned will be nil.
    908 // Otherwise the error returned will be non-nil.
    909 func NewWriter(w io.Writer, level int) (*Writer, error) {
    910 	var dw Writer
    911 	if err := dw.d.init(w, level); err != nil {
    912 		return nil, err
    913 	}
    914 	return &dw, nil
    915 }
    916 
    917 // NewWriterDict is like NewWriter but initializes the new
    918 // Writer with a preset dictionary.  The returned Writer behaves
    919 // as if the dictionary had been written to it without producing
    920 // any compressed output.  The compressed data written to w
    921 // can only be decompressed by a Reader initialized with the
    922 // same dictionary.
    923 func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) {
    924 	zw, err := NewWriter(w, level)
    925 	if err != nil {
    926 		return nil, err
    927 	}
    928 	zw.d.fillWindow(dict)
    929 	zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method.
    930 	return zw, err
    931 }
    932 
    933 // A Writer takes data written to it and writes the compressed
    934 // form of that data to an underlying writer (see NewWriter).
    935 type Writer struct {
    936 	d    compressor
    937 	dict []byte
    938 }
    939 
    940 // Write writes data to w, which will eventually write the
    941 // compressed form of data to its underlying writer.
    942 func (w *Writer) Write(data []byte) (n int, err error) {
    943 	return w.d.write(data)
    944 }
    945 
    946 // Flush flushes any pending data to the underlying writer.
    947 // It is useful mainly in compressed network protocols, to ensure that
    948 // a remote reader has enough data to reconstruct a packet.
    949 // Flush does not return until the data has been written.
    950 // Calling Flush when there is no pending data still causes the Writer
    951 // to emit a sync marker of at least 4 bytes.
    952 // If the underlying writer returns an error, Flush returns that error.
    953 //
    954 // In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.
    955 func (w *Writer) Flush() error {
    956 	// For more about flushing:
    957 	// http://www.bolet.org/~pornin/deflate-flush.html
    958 	return w.d.syncFlush()
    959 }
    960 
    961 // Close flushes and closes the writer.
    962 func (w *Writer) Close() error {
    963 	return w.d.close()
    964 }
    965 
    966 // Reset discards the writer's state and makes it equivalent to
    967 // the result of NewWriter or NewWriterDict called with dst
    968 // and w's level and dictionary.
    969 func (w *Writer) Reset(dst io.Writer) {
    970 	if len(w.dict) > 0 {
    971 		// w was created with NewWriterDict
    972 		w.d.reset(dst)
    973 		if dst != nil {
    974 			w.d.fillWindow(w.dict)
    975 		}
    976 	} else {
    977 		// w was created with NewWriter
    978 		w.d.reset(dst)
    979 	}
    980 }
    981 
    982 // ResetDict discards the writer's state and makes it equivalent to
    983 // the result of NewWriter or NewWriterDict called with dst
    984 // and w's level, but sets a specific dictionary.
    985 func (w *Writer) ResetDict(dst io.Writer, dict []byte) {
    986 	w.dict = dict
    987 	w.d.reset(dst)
    988 	w.d.fillWindow(w.dict)
    989 }