rect.go (24902B)
1 // Copyright 2014 Google Inc. All rights reserved. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 package s2 16 17 import ( 18 "fmt" 19 "io" 20 "math" 21 22 "github.com/golang/geo/r1" 23 "github.com/golang/geo/r3" 24 "github.com/golang/geo/s1" 25 ) 26 27 // Rect represents a closed latitude-longitude rectangle. 28 type Rect struct { 29 Lat r1.Interval 30 Lng s1.Interval 31 } 32 33 var ( 34 validRectLatRange = r1.Interval{-math.Pi / 2, math.Pi / 2} 35 validRectLngRange = s1.FullInterval() 36 ) 37 38 // EmptyRect returns the empty rectangle. 39 func EmptyRect() Rect { return Rect{r1.EmptyInterval(), s1.EmptyInterval()} } 40 41 // FullRect returns the full rectangle. 42 func FullRect() Rect { return Rect{validRectLatRange, validRectLngRange} } 43 44 // RectFromLatLng constructs a rectangle containing a single point p. 45 func RectFromLatLng(p LatLng) Rect { 46 return Rect{ 47 Lat: r1.Interval{p.Lat.Radians(), p.Lat.Radians()}, 48 Lng: s1.Interval{p.Lng.Radians(), p.Lng.Radians()}, 49 } 50 } 51 52 // RectFromCenterSize constructs a rectangle with the given size and center. 53 // center needs to be normalized, but size does not. The latitude 54 // interval of the result is clamped to [-90,90] degrees, and the longitude 55 // interval of the result is FullRect() if and only if the longitude size is 56 // 360 degrees or more. 57 // 58 // Examples of clamping (in degrees): 59 // center=(80,170), size=(40,60) -> lat=[60,90], lng=[140,-160] 60 // center=(10,40), size=(210,400) -> lat=[-90,90], lng=[-180,180] 61 // center=(-90,180), size=(20,50) -> lat=[-90,-80], lng=[155,-155] 62 func RectFromCenterSize(center, size LatLng) Rect { 63 half := LatLng{size.Lat / 2, size.Lng / 2} 64 return RectFromLatLng(center).expanded(half) 65 } 66 67 // IsValid returns true iff the rectangle is valid. 68 // This requires Lat ⊆ [-π/2,π/2] and Lng ⊆ [-π,π], and Lat = ∅ iff Lng = ∅ 69 func (r Rect) IsValid() bool { 70 return math.Abs(r.Lat.Lo) <= math.Pi/2 && 71 math.Abs(r.Lat.Hi) <= math.Pi/2 && 72 r.Lng.IsValid() && 73 r.Lat.IsEmpty() == r.Lng.IsEmpty() 74 } 75 76 // IsEmpty reports whether the rectangle is empty. 77 func (r Rect) IsEmpty() bool { return r.Lat.IsEmpty() } 78 79 // IsFull reports whether the rectangle is full. 80 func (r Rect) IsFull() bool { return r.Lat.Equal(validRectLatRange) && r.Lng.IsFull() } 81 82 // IsPoint reports whether the rectangle is a single point. 83 func (r Rect) IsPoint() bool { return r.Lat.Lo == r.Lat.Hi && r.Lng.Lo == r.Lng.Hi } 84 85 // Vertex returns the i-th vertex of the rectangle (i = 0,1,2,3) in CCW order 86 // (lower left, lower right, upper right, upper left). 87 func (r Rect) Vertex(i int) LatLng { 88 var lat, lng float64 89 90 switch i { 91 case 0: 92 lat = r.Lat.Lo 93 lng = r.Lng.Lo 94 case 1: 95 lat = r.Lat.Lo 96 lng = r.Lng.Hi 97 case 2: 98 lat = r.Lat.Hi 99 lng = r.Lng.Hi 100 case 3: 101 lat = r.Lat.Hi 102 lng = r.Lng.Lo 103 } 104 return LatLng{s1.Angle(lat) * s1.Radian, s1.Angle(lng) * s1.Radian} 105 } 106 107 // Lo returns one corner of the rectangle. 108 func (r Rect) Lo() LatLng { 109 return LatLng{s1.Angle(r.Lat.Lo) * s1.Radian, s1.Angle(r.Lng.Lo) * s1.Radian} 110 } 111 112 // Hi returns the other corner of the rectangle. 113 func (r Rect) Hi() LatLng { 114 return LatLng{s1.Angle(r.Lat.Hi) * s1.Radian, s1.Angle(r.Lng.Hi) * s1.Radian} 115 } 116 117 // Center returns the center of the rectangle. 118 func (r Rect) Center() LatLng { 119 return LatLng{s1.Angle(r.Lat.Center()) * s1.Radian, s1.Angle(r.Lng.Center()) * s1.Radian} 120 } 121 122 // Size returns the size of the Rect. 123 func (r Rect) Size() LatLng { 124 return LatLng{s1.Angle(r.Lat.Length()) * s1.Radian, s1.Angle(r.Lng.Length()) * s1.Radian} 125 } 126 127 // Area returns the surface area of the Rect. 128 func (r Rect) Area() float64 { 129 if r.IsEmpty() { 130 return 0 131 } 132 capDiff := math.Abs(math.Sin(r.Lat.Hi) - math.Sin(r.Lat.Lo)) 133 return r.Lng.Length() * capDiff 134 } 135 136 // AddPoint increases the size of the rectangle to include the given point. 137 func (r Rect) AddPoint(ll LatLng) Rect { 138 if !ll.IsValid() { 139 return r 140 } 141 return Rect{ 142 Lat: r.Lat.AddPoint(ll.Lat.Radians()), 143 Lng: r.Lng.AddPoint(ll.Lng.Radians()), 144 } 145 } 146 147 // expanded returns a rectangle that has been expanded by margin.Lat on each side 148 // in the latitude direction, and by margin.Lng on each side in the longitude 149 // direction. If either margin is negative, then it shrinks the rectangle on 150 // the corresponding sides instead. The resulting rectangle may be empty. 151 // 152 // The latitude-longitude space has the topology of a cylinder. Longitudes 153 // "wrap around" at +/-180 degrees, while latitudes are clamped to range [-90, 90]. 154 // This means that any expansion (positive or negative) of the full longitude range 155 // remains full (since the "rectangle" is actually a continuous band around the 156 // cylinder), while expansion of the full latitude range remains full only if the 157 // margin is positive. 158 // 159 // If either the latitude or longitude interval becomes empty after 160 // expansion by a negative margin, the result is empty. 161 // 162 // Note that if an expanded rectangle contains a pole, it may not contain 163 // all possible lat/lng representations of that pole, e.g., both points [π/2,0] 164 // and [π/2,1] represent the same pole, but they might not be contained by the 165 // same Rect. 166 // 167 // If you are trying to grow a rectangle by a certain distance on the 168 // sphere (e.g. 5km), refer to the ExpandedByDistance() C++ method implementation 169 // instead. 170 func (r Rect) expanded(margin LatLng) Rect { 171 lat := r.Lat.Expanded(margin.Lat.Radians()) 172 lng := r.Lng.Expanded(margin.Lng.Radians()) 173 174 if lat.IsEmpty() || lng.IsEmpty() { 175 return EmptyRect() 176 } 177 178 return Rect{ 179 Lat: lat.Intersection(validRectLatRange), 180 Lng: lng, 181 } 182 } 183 184 func (r Rect) String() string { return fmt.Sprintf("[Lo%v, Hi%v]", r.Lo(), r.Hi()) } 185 186 // PolarClosure returns the rectangle unmodified if it does not include either pole. 187 // If it includes either pole, PolarClosure returns an expansion of the rectangle along 188 // the longitudinal range to include all possible representations of the contained poles. 189 func (r Rect) PolarClosure() Rect { 190 if r.Lat.Lo == -math.Pi/2 || r.Lat.Hi == math.Pi/2 { 191 return Rect{r.Lat, s1.FullInterval()} 192 } 193 return r 194 } 195 196 // Union returns the smallest Rect containing the union of this rectangle and the given rectangle. 197 func (r Rect) Union(other Rect) Rect { 198 return Rect{ 199 Lat: r.Lat.Union(other.Lat), 200 Lng: r.Lng.Union(other.Lng), 201 } 202 } 203 204 // Intersection returns the smallest rectangle containing the intersection of 205 // this rectangle and the given rectangle. Note that the region of intersection 206 // may consist of two disjoint rectangles, in which case a single rectangle 207 // spanning both of them is returned. 208 func (r Rect) Intersection(other Rect) Rect { 209 lat := r.Lat.Intersection(other.Lat) 210 lng := r.Lng.Intersection(other.Lng) 211 212 if lat.IsEmpty() || lng.IsEmpty() { 213 return EmptyRect() 214 } 215 return Rect{lat, lng} 216 } 217 218 // Intersects reports whether this rectangle and the other have any points in common. 219 func (r Rect) Intersects(other Rect) bool { 220 return r.Lat.Intersects(other.Lat) && r.Lng.Intersects(other.Lng) 221 } 222 223 // CapBound returns a cap that contains Rect. 224 func (r Rect) CapBound() Cap { 225 // We consider two possible bounding caps, one whose axis passes 226 // through the center of the lat-long rectangle and one whose axis 227 // is the north or south pole. We return the smaller of the two caps. 228 229 if r.IsEmpty() { 230 return EmptyCap() 231 } 232 233 var poleZ, poleAngle float64 234 if r.Lat.Hi+r.Lat.Lo < 0 { 235 // South pole axis yields smaller cap. 236 poleZ = -1 237 poleAngle = math.Pi/2 + r.Lat.Hi 238 } else { 239 poleZ = 1 240 poleAngle = math.Pi/2 - r.Lat.Lo 241 } 242 poleCap := CapFromCenterAngle(Point{r3.Vector{0, 0, poleZ}}, s1.Angle(poleAngle)*s1.Radian) 243 244 // For bounding rectangles that span 180 degrees or less in longitude, the 245 // maximum cap size is achieved at one of the rectangle vertices. For 246 // rectangles that are larger than 180 degrees, we punt and always return a 247 // bounding cap centered at one of the two poles. 248 if math.Remainder(r.Lng.Hi-r.Lng.Lo, 2*math.Pi) >= 0 && r.Lng.Hi-r.Lng.Lo < 2*math.Pi { 249 midCap := CapFromPoint(PointFromLatLng(r.Center())).AddPoint(PointFromLatLng(r.Lo())).AddPoint(PointFromLatLng(r.Hi())) 250 if midCap.Height() < poleCap.Height() { 251 return midCap 252 } 253 } 254 return poleCap 255 } 256 257 // RectBound returns itself. 258 func (r Rect) RectBound() Rect { 259 return r 260 } 261 262 // Contains reports whether this Rect contains the other Rect. 263 func (r Rect) Contains(other Rect) bool { 264 return r.Lat.ContainsInterval(other.Lat) && r.Lng.ContainsInterval(other.Lng) 265 } 266 267 // ContainsCell reports whether the given Cell is contained by this Rect. 268 func (r Rect) ContainsCell(c Cell) bool { 269 // A latitude-longitude rectangle contains a cell if and only if it contains 270 // the cell's bounding rectangle. This test is exact from a mathematical 271 // point of view, assuming that the bounds returned by Cell.RectBound() 272 // are tight. However, note that there can be a loss of precision when 273 // converting between representations -- for example, if an s2.Cell is 274 // converted to a polygon, the polygon's bounding rectangle may not contain 275 // the cell's bounding rectangle. This has some slightly unexpected side 276 // effects; for instance, if one creates an s2.Polygon from an s2.Cell, the 277 // polygon will contain the cell, but the polygon's bounding box will not. 278 return r.Contains(c.RectBound()) 279 } 280 281 // ContainsLatLng reports whether the given LatLng is within the Rect. 282 func (r Rect) ContainsLatLng(ll LatLng) bool { 283 if !ll.IsValid() { 284 return false 285 } 286 return r.Lat.Contains(ll.Lat.Radians()) && r.Lng.Contains(ll.Lng.Radians()) 287 } 288 289 // ContainsPoint reports whether the given Point is within the Rect. 290 func (r Rect) ContainsPoint(p Point) bool { 291 return r.ContainsLatLng(LatLngFromPoint(p)) 292 } 293 294 // CellUnionBound computes a covering of the Rect. 295 func (r Rect) CellUnionBound() []CellID { 296 return r.CapBound().CellUnionBound() 297 } 298 299 // intersectsLatEdge reports whether the edge AB intersects the given edge of constant 300 // latitude. Requires the points to have unit length. 301 func intersectsLatEdge(a, b Point, lat s1.Angle, lng s1.Interval) bool { 302 // Unfortunately, lines of constant latitude are curves on 303 // the sphere. They can intersect a straight edge in 0, 1, or 2 points. 304 305 // First, compute the normal to the plane AB that points vaguely north. 306 z := Point{a.PointCross(b).Normalize()} 307 if z.Z < 0 { 308 z = Point{z.Mul(-1)} 309 } 310 311 // Extend this to an orthonormal frame (x,y,z) where x is the direction 312 // where the great circle through AB achieves its maximium latitude. 313 y := Point{z.PointCross(PointFromCoords(0, 0, 1)).Normalize()} 314 x := y.Cross(z.Vector) 315 316 // Compute the angle "theta" from the x-axis (in the x-y plane defined 317 // above) where the great circle intersects the given line of latitude. 318 sinLat := math.Sin(float64(lat)) 319 if math.Abs(sinLat) >= x.Z { 320 // The great circle does not reach the given latitude. 321 return false 322 } 323 324 cosTheta := sinLat / x.Z 325 sinTheta := math.Sqrt(1 - cosTheta*cosTheta) 326 theta := math.Atan2(sinTheta, cosTheta) 327 328 // The candidate intersection points are located +/- theta in the x-y 329 // plane. For an intersection to be valid, we need to check that the 330 // intersection point is contained in the interior of the edge AB and 331 // also that it is contained within the given longitude interval "lng". 332 333 // Compute the range of theta values spanned by the edge AB. 334 abTheta := s1.IntervalFromPointPair( 335 math.Atan2(a.Dot(y.Vector), a.Dot(x)), 336 math.Atan2(b.Dot(y.Vector), b.Dot(x))) 337 338 if abTheta.Contains(theta) { 339 // Check if the intersection point is also in the given lng interval. 340 isect := x.Mul(cosTheta).Add(y.Mul(sinTheta)) 341 if lng.Contains(math.Atan2(isect.Y, isect.X)) { 342 return true 343 } 344 } 345 346 if abTheta.Contains(-theta) { 347 // Check if the other intersection point is also in the given lng interval. 348 isect := x.Mul(cosTheta).Sub(y.Mul(sinTheta)) 349 if lng.Contains(math.Atan2(isect.Y, isect.X)) { 350 return true 351 } 352 } 353 return false 354 } 355 356 // intersectsLngEdge reports whether the edge AB intersects the given edge of constant 357 // longitude. Requires the points to have unit length. 358 func intersectsLngEdge(a, b Point, lat r1.Interval, lng s1.Angle) bool { 359 // The nice thing about edges of constant longitude is that 360 // they are straight lines on the sphere (geodesics). 361 return CrossingSign(a, b, PointFromLatLng(LatLng{s1.Angle(lat.Lo), lng}), 362 PointFromLatLng(LatLng{s1.Angle(lat.Hi), lng})) == Cross 363 } 364 365 // IntersectsCell reports whether this rectangle intersects the given cell. This is an 366 // exact test and may be fairly expensive. 367 func (r Rect) IntersectsCell(c Cell) bool { 368 // First we eliminate the cases where one region completely contains the 369 // other. Once these are disposed of, then the regions will intersect 370 // if and only if their boundaries intersect. 371 if r.IsEmpty() { 372 return false 373 } 374 if r.ContainsPoint(Point{c.id.rawPoint()}) { 375 return true 376 } 377 if c.ContainsPoint(PointFromLatLng(r.Center())) { 378 return true 379 } 380 381 // Quick rejection test (not required for correctness). 382 if !r.Intersects(c.RectBound()) { 383 return false 384 } 385 386 // Precompute the cell vertices as points and latitude-longitudes. We also 387 // check whether the Cell contains any corner of the rectangle, or 388 // vice-versa, since the edge-crossing tests only check the edge interiors. 389 vertices := [4]Point{} 390 latlngs := [4]LatLng{} 391 392 for i := range vertices { 393 vertices[i] = c.Vertex(i) 394 latlngs[i] = LatLngFromPoint(vertices[i]) 395 if r.ContainsLatLng(latlngs[i]) { 396 return true 397 } 398 if c.ContainsPoint(PointFromLatLng(r.Vertex(i))) { 399 return true 400 } 401 } 402 403 // Now check whether the boundaries intersect. Unfortunately, a 404 // latitude-longitude rectangle does not have straight edges: two edges 405 // are curved, and at least one of them is concave. 406 for i := range vertices { 407 edgeLng := s1.IntervalFromEndpoints(latlngs[i].Lng.Radians(), latlngs[(i+1)&3].Lng.Radians()) 408 if !r.Lng.Intersects(edgeLng) { 409 continue 410 } 411 412 a := vertices[i] 413 b := vertices[(i+1)&3] 414 if edgeLng.Contains(r.Lng.Lo) && intersectsLngEdge(a, b, r.Lat, s1.Angle(r.Lng.Lo)) { 415 return true 416 } 417 if edgeLng.Contains(r.Lng.Hi) && intersectsLngEdge(a, b, r.Lat, s1.Angle(r.Lng.Hi)) { 418 return true 419 } 420 if intersectsLatEdge(a, b, s1.Angle(r.Lat.Lo), r.Lng) { 421 return true 422 } 423 if intersectsLatEdge(a, b, s1.Angle(r.Lat.Hi), r.Lng) { 424 return true 425 } 426 } 427 return false 428 } 429 430 // Encode encodes the Rect. 431 func (r Rect) Encode(w io.Writer) error { 432 e := &encoder{w: w} 433 r.encode(e) 434 return e.err 435 } 436 437 func (r Rect) encode(e *encoder) { 438 e.writeInt8(encodingVersion) 439 e.writeFloat64(r.Lat.Lo) 440 e.writeFloat64(r.Lat.Hi) 441 e.writeFloat64(r.Lng.Lo) 442 e.writeFloat64(r.Lng.Hi) 443 } 444 445 // Decode decodes a rectangle. 446 func (r *Rect) Decode(rd io.Reader) error { 447 d := &decoder{r: asByteReader(rd)} 448 r.decode(d) 449 return d.err 450 } 451 452 func (r *Rect) decode(d *decoder) { 453 if version := d.readUint8(); int8(version) != encodingVersion && d.err == nil { 454 d.err = fmt.Errorf("can't decode version %d; my version: %d", version, encodingVersion) 455 return 456 } 457 r.Lat.Lo = d.readFloat64() 458 r.Lat.Hi = d.readFloat64() 459 r.Lng.Lo = d.readFloat64() 460 r.Lng.Hi = d.readFloat64() 461 return 462 } 463 464 // DistanceToLatLng returns the minimum distance (measured along the surface of the sphere) 465 // from a given point to the rectangle (both its boundary and its interior). 466 // If r is empty, the result is meaningless. 467 // The latlng must be valid. 468 func (r Rect) DistanceToLatLng(ll LatLng) s1.Angle { 469 if r.Lng.Contains(float64(ll.Lng)) { 470 return maxAngle(0, ll.Lat-s1.Angle(r.Lat.Hi), s1.Angle(r.Lat.Lo)-ll.Lat) 471 } 472 473 i := s1.IntervalFromEndpoints(r.Lng.Hi, r.Lng.ComplementCenter()) 474 rectLng := r.Lng.Lo 475 if i.Contains(float64(ll.Lng)) { 476 rectLng = r.Lng.Hi 477 } 478 479 lo := LatLng{s1.Angle(r.Lat.Lo) * s1.Radian, s1.Angle(rectLng) * s1.Radian} 480 hi := LatLng{s1.Angle(r.Lat.Hi) * s1.Radian, s1.Angle(rectLng) * s1.Radian} 481 return DistanceFromSegment(PointFromLatLng(ll), PointFromLatLng(lo), PointFromLatLng(hi)) 482 } 483 484 // DirectedHausdorffDistance returns the directed Hausdorff distance (measured along the 485 // surface of the sphere) to the given Rect. The directed Hausdorff 486 // distance from rectangle A to rectangle B is given by 487 // h(A, B) = max_{p in A} min_{q in B} d(p, q). 488 func (r Rect) DirectedHausdorffDistance(other Rect) s1.Angle { 489 if r.IsEmpty() { 490 return 0 * s1.Radian 491 } 492 if other.IsEmpty() { 493 return math.Pi * s1.Radian 494 } 495 496 lng := r.Lng.DirectedHausdorffDistance(other.Lng) 497 return directedHausdorffDistance(lng, r.Lat, other.Lat) 498 } 499 500 // HausdorffDistance returns the undirected Hausdorff distance (measured along the 501 // surface of the sphere) to the given Rect. 502 // The Hausdorff distance between rectangle A and rectangle B is given by 503 // H(A, B) = max{h(A, B), h(B, A)}. 504 func (r Rect) HausdorffDistance(other Rect) s1.Angle { 505 return maxAngle(r.DirectedHausdorffDistance(other), 506 other.DirectedHausdorffDistance(r)) 507 } 508 509 // ApproxEqual reports whether the latitude and longitude intervals of the two rectangles 510 // are the same up to a small tolerance. 511 func (r Rect) ApproxEqual(other Rect) bool { 512 return r.Lat.ApproxEqual(other.Lat) && r.Lng.ApproxEqual(other.Lng) 513 } 514 515 // directedHausdorffDistance returns the directed Hausdorff distance 516 // from one longitudinal edge spanning latitude range 'a' to the other 517 // longitudinal edge spanning latitude range 'b', with their longitudinal 518 // difference given by 'lngDiff'. 519 func directedHausdorffDistance(lngDiff s1.Angle, a, b r1.Interval) s1.Angle { 520 // By symmetry, we can assume a's longitude is 0 and b's longitude is 521 // lngDiff. Call b's two endpoints bLo and bHi. Let H be the hemisphere 522 // containing a and delimited by the longitude line of b. The Voronoi diagram 523 // of b on H has three edges (portions of great circles) all orthogonal to b 524 // and meeting at bLo cross bHi. 525 // E1: (bLo, bLo cross bHi) 526 // E2: (bHi, bLo cross bHi) 527 // E3: (-bMid, bLo cross bHi), where bMid is the midpoint of b 528 // 529 // They subdivide H into three Voronoi regions. Depending on how longitude 0 530 // (which contains edge a) intersects these regions, we distinguish two cases: 531 // Case 1: it intersects three regions. This occurs when lngDiff <= π/2. 532 // Case 2: it intersects only two regions. This occurs when lngDiff > π/2. 533 // 534 // In the first case, the directed Hausdorff distance to edge b can only be 535 // realized by the following points on a: 536 // A1: two endpoints of a. 537 // A2: intersection of a with the equator, if b also intersects the equator. 538 // 539 // In the second case, the directed Hausdorff distance to edge b can only be 540 // realized by the following points on a: 541 // B1: two endpoints of a. 542 // B2: intersection of a with E3 543 // B3: farthest point from bLo to the interior of D, and farthest point from 544 // bHi to the interior of U, if any, where D (resp. U) is the portion 545 // of edge a below (resp. above) the intersection point from B2. 546 547 if lngDiff < 0 { 548 panic("impossible: negative lngDiff") 549 } 550 if lngDiff > math.Pi { 551 panic("impossible: lngDiff > Pi") 552 } 553 554 if lngDiff == 0 { 555 return s1.Angle(a.DirectedHausdorffDistance(b)) 556 } 557 558 // Assumed longitude of b. 559 bLng := lngDiff 560 // Two endpoints of b. 561 bLo := PointFromLatLng(LatLng{s1.Angle(b.Lo), bLng}) 562 bHi := PointFromLatLng(LatLng{s1.Angle(b.Hi), bLng}) 563 564 // Cases A1 and B1. 565 aLo := PointFromLatLng(LatLng{s1.Angle(a.Lo), 0}) 566 aHi := PointFromLatLng(LatLng{s1.Angle(a.Hi), 0}) 567 maxDistance := maxAngle( 568 DistanceFromSegment(aLo, bLo, bHi), 569 DistanceFromSegment(aHi, bLo, bHi)) 570 571 if lngDiff <= math.Pi/2 { 572 // Case A2. 573 if a.Contains(0) && b.Contains(0) { 574 maxDistance = maxAngle(maxDistance, lngDiff) 575 } 576 return maxDistance 577 } 578 579 // Case B2. 580 p := bisectorIntersection(b, bLng) 581 pLat := LatLngFromPoint(p).Lat 582 if a.Contains(float64(pLat)) { 583 maxDistance = maxAngle(maxDistance, p.Angle(bLo.Vector)) 584 } 585 586 // Case B3. 587 if pLat > s1.Angle(a.Lo) { 588 intDist, ok := interiorMaxDistance(r1.Interval{a.Lo, math.Min(float64(pLat), a.Hi)}, bLo) 589 if ok { 590 maxDistance = maxAngle(maxDistance, intDist) 591 } 592 } 593 if pLat < s1.Angle(a.Hi) { 594 intDist, ok := interiorMaxDistance(r1.Interval{math.Max(float64(pLat), a.Lo), a.Hi}, bHi) 595 if ok { 596 maxDistance = maxAngle(maxDistance, intDist) 597 } 598 } 599 600 return maxDistance 601 } 602 603 // interiorMaxDistance returns the max distance from a point b to the segment spanning latitude range 604 // aLat on longitude 0 if the max occurs in the interior of aLat. Otherwise, returns (0, false). 605 func interiorMaxDistance(aLat r1.Interval, b Point) (a s1.Angle, ok bool) { 606 // Longitude 0 is in the y=0 plane. b.X >= 0 implies that the maximum 607 // does not occur in the interior of aLat. 608 if aLat.IsEmpty() || b.X >= 0 { 609 return 0, false 610 } 611 612 // Project b to the y=0 plane. The antipodal of the normalized projection is 613 // the point at which the maxium distance from b occurs, if it is contained 614 // in aLat. 615 intersectionPoint := PointFromCoords(-b.X, 0, -b.Z) 616 if !aLat.InteriorContains(float64(LatLngFromPoint(intersectionPoint).Lat)) { 617 return 0, false 618 } 619 return b.Angle(intersectionPoint.Vector), true 620 } 621 622 // bisectorIntersection return the intersection of longitude 0 with the bisector of an edge 623 // on longitude 'lng' and spanning latitude range 'lat'. 624 func bisectorIntersection(lat r1.Interval, lng s1.Angle) Point { 625 lng = s1.Angle(math.Abs(float64(lng))) 626 latCenter := s1.Angle(lat.Center()) 627 628 // A vector orthogonal to the bisector of the given longitudinal edge. 629 orthoBisector := LatLng{latCenter - math.Pi/2, lng} 630 if latCenter < 0 { 631 orthoBisector = LatLng{-latCenter - math.Pi/2, lng - math.Pi} 632 } 633 634 // A vector orthogonal to longitude 0. 635 orthoLng := Point{r3.Vector{0, -1, 0}} 636 637 return orthoLng.PointCross(PointFromLatLng(orthoBisector)) 638 } 639 640 // Centroid returns the true centroid of the given Rect multiplied by its 641 // surface area. The result is not unit length, so you may want to normalize it. 642 // Note that in general the centroid is *not* at the center of the rectangle, and 643 // in fact it may not even be contained by the rectangle. (It is the "center of 644 // mass" of the rectangle viewed as subset of the unit sphere, i.e. it is the 645 // point in space about which this curved shape would rotate.) 646 // 647 // The reason for multiplying the result by the rectangle area is to make it 648 // easier to compute the centroid of more complicated shapes. The centroid 649 // of a union of disjoint regions can be computed simply by adding their 650 // Centroid results. 651 func (r Rect) Centroid() Point { 652 // When a sphere is divided into slices of constant thickness by a set 653 // of parallel planes, all slices have the same surface area. This 654 // implies that the z-component of the centroid is simply the midpoint 655 // of the z-interval spanned by the Rect. 656 // 657 // Similarly, it is easy to see that the (x,y) of the centroid lies in 658 // the plane through the midpoint of the rectangle's longitude interval. 659 // We only need to determine the distance "d" of this point from the 660 // z-axis. 661 // 662 // Let's restrict our attention to a particular z-value. In this 663 // z-plane, the Rect is a circular arc. The centroid of this arc 664 // lies on a radial line through the midpoint of the arc, and at a 665 // distance from the z-axis of 666 // 667 // r * (sin(alpha) / alpha) 668 // 669 // where r = sqrt(1-z^2) is the radius of the arc, and "alpha" is half 670 // of the arc length (i.e., the arc covers longitudes [-alpha, alpha]). 671 // 672 // To find the centroid distance from the z-axis for the entire 673 // rectangle, we just need to integrate over the z-interval. This gives 674 // 675 // d = Integrate[sqrt(1-z^2)*sin(alpha)/alpha, z1..z2] / (z2 - z1) 676 // 677 // where [z1, z2] is the range of z-values covered by the rectangle. 678 // This simplifies to 679 // 680 // d = sin(alpha)/(2*alpha*(z2-z1))*(z2*r2 - z1*r1 + theta2 - theta1) 681 // 682 // where [theta1, theta2] is the latitude interval, z1=sin(theta1), 683 // z2=sin(theta2), r1=cos(theta1), and r2=cos(theta2). 684 // 685 // Finally, we want to return not the centroid itself, but the centroid 686 // scaled by the area of the rectangle. The area of the rectangle is 687 // 688 // A = 2 * alpha * (z2 - z1) 689 // 690 // which fortunately appears in the denominator of "d". 691 692 if r.IsEmpty() { 693 return Point{} 694 } 695 696 z1 := math.Sin(r.Lat.Lo) 697 z2 := math.Sin(r.Lat.Hi) 698 r1 := math.Cos(r.Lat.Lo) 699 r2 := math.Cos(r.Lat.Hi) 700 701 alpha := 0.5 * r.Lng.Length() 702 r0 := math.Sin(alpha) * (r2*z2 - r1*z1 + r.Lat.Length()) 703 lng := r.Lng.Center() 704 z := alpha * (z2 + z1) * (z2 - z1) // scaled by the area 705 706 return Point{r3.Vector{r0 * math.Cos(lng), r0 * math.Sin(lng), z}} 707 } 708 709 // BUG: The major differences from the C++ version are: 710 // - Get*Distance, Vertex, InteriorContains(LatLng|Rect|Point)