gtsocial-umbx

Unnamed repository; edit this file 'description' to name the repository.
Log | Files | Refs | README | LICENSE

matrix3x3.go (4127B)


      1 // Copyright 2015 Google Inc. All rights reserved.
      2 //
      3 // Licensed under the Apache License, Version 2.0 (the "License");
      4 // you may not use this file except in compliance with the License.
      5 // You may obtain a copy of the License at
      6 //
      7 //     http://www.apache.org/licenses/LICENSE-2.0
      8 //
      9 // Unless required by applicable law or agreed to in writing, software
     10 // distributed under the License is distributed on an "AS IS" BASIS,
     11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 // See the License for the specific language governing permissions and
     13 // limitations under the License.
     14 
     15 package s2
     16 
     17 import (
     18 	"fmt"
     19 
     20 	"github.com/golang/geo/r3"
     21 )
     22 
     23 // matrix3x3 represents a traditional 3x3 matrix of floating point values.
     24 // This is not a full fledged matrix. It only contains the pieces needed
     25 // to satisfy the computations done within the s2 package.
     26 type matrix3x3 [3][3]float64
     27 
     28 // col returns the given column as a Point.
     29 func (m *matrix3x3) col(col int) Point {
     30 	return Point{r3.Vector{m[0][col], m[1][col], m[2][col]}}
     31 }
     32 
     33 // row returns the given row as a Point.
     34 func (m *matrix3x3) row(row int) Point {
     35 	return Point{r3.Vector{m[row][0], m[row][1], m[row][2]}}
     36 }
     37 
     38 // setCol sets the specified column to the value in the given Point.
     39 func (m *matrix3x3) setCol(col int, p Point) *matrix3x3 {
     40 	m[0][col] = p.X
     41 	m[1][col] = p.Y
     42 	m[2][col] = p.Z
     43 
     44 	return m
     45 }
     46 
     47 // setRow sets the specified row to the value in the given Point.
     48 func (m *matrix3x3) setRow(row int, p Point) *matrix3x3 {
     49 	m[row][0] = p.X
     50 	m[row][1] = p.Y
     51 	m[row][2] = p.Z
     52 
     53 	return m
     54 }
     55 
     56 // scale multiplies the matrix by the given value.
     57 func (m *matrix3x3) scale(f float64) *matrix3x3 {
     58 	return &matrix3x3{
     59 		[3]float64{f * m[0][0], f * m[0][1], f * m[0][2]},
     60 		[3]float64{f * m[1][0], f * m[1][1], f * m[1][2]},
     61 		[3]float64{f * m[2][0], f * m[2][1], f * m[2][2]},
     62 	}
     63 }
     64 
     65 // mul returns the multiplication of m by the Point p and converts the
     66 // resulting 1x3 matrix into a Point.
     67 func (m *matrix3x3) mul(p Point) Point {
     68 	return Point{r3.Vector{
     69 		m[0][0]*p.X + m[0][1]*p.Y + m[0][2]*p.Z,
     70 		m[1][0]*p.X + m[1][1]*p.Y + m[1][2]*p.Z,
     71 		m[2][0]*p.X + m[2][1]*p.Y + m[2][2]*p.Z,
     72 	}}
     73 }
     74 
     75 // det returns the determinant of this matrix.
     76 func (m *matrix3x3) det() float64 {
     77 	//      | a  b  c |
     78 	//  det | d  e  f | = aei + bfg + cdh - ceg - bdi - afh
     79 	//      | g  h  i |
     80 	return m[0][0]*m[1][1]*m[2][2] + m[0][1]*m[1][2]*m[2][0] + m[0][2]*m[1][0]*m[2][1] -
     81 		m[0][2]*m[1][1]*m[2][0] - m[0][1]*m[1][0]*m[2][2] - m[0][0]*m[1][2]*m[2][1]
     82 }
     83 
     84 // transpose reflects the matrix along its diagonal and returns the result.
     85 func (m *matrix3x3) transpose() *matrix3x3 {
     86 	m[0][1], m[1][0] = m[1][0], m[0][1]
     87 	m[0][2], m[2][0] = m[2][0], m[0][2]
     88 	m[1][2], m[2][1] = m[2][1], m[1][2]
     89 
     90 	return m
     91 }
     92 
     93 // String formats the matrix into an easier to read layout.
     94 func (m *matrix3x3) String() string {
     95 	return fmt.Sprintf("[ %0.4f %0.4f %0.4f ] [ %0.4f %0.4f %0.4f ] [ %0.4f %0.4f %0.4f ]",
     96 		m[0][0], m[0][1], m[0][2],
     97 		m[1][0], m[1][1], m[1][2],
     98 		m[2][0], m[2][1], m[2][2],
     99 	)
    100 }
    101 
    102 // getFrame returns the orthonormal frame for the given point on the unit sphere.
    103 func getFrame(p Point) matrix3x3 {
    104 	// Given the point p on the unit sphere, extend this into a right-handed
    105 	// coordinate frame of unit-length column vectors m = (x,y,z).  Note that
    106 	// the vectors (x,y) are an orthonormal frame for the tangent space at point p,
    107 	// while p itself is an orthonormal frame for the normal space at p.
    108 	m := matrix3x3{}
    109 	m.setCol(2, p)
    110 	m.setCol(1, Point{p.Ortho()})
    111 	m.setCol(0, Point{m.col(1).Cross(p.Vector)})
    112 	return m
    113 }
    114 
    115 // toFrame returns the coordinates of the given point with respect to its orthonormal basis m.
    116 // The resulting point q satisfies the identity (m * q == p).
    117 func toFrame(m matrix3x3, p Point) Point {
    118 	// The inverse of an orthonormal matrix is its transpose.
    119 	return m.transpose().mul(p)
    120 }
    121 
    122 // fromFrame returns the coordinates of the given point in standard axis-aligned basis
    123 // from its orthonormal basis m.
    124 // The resulting point p satisfies the identity (p == m * q).
    125 func fromFrame(m matrix3x3, q Point) Point {
    126 	return m.mul(q)
    127 }