cellid.go (34379B)
1 // Copyright 2014 Google Inc. All rights reserved. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 package s2 16 17 import ( 18 "bytes" 19 "fmt" 20 "io" 21 "math" 22 "sort" 23 "strconv" 24 "strings" 25 26 "github.com/golang/geo/r1" 27 "github.com/golang/geo/r2" 28 "github.com/golang/geo/r3" 29 "github.com/golang/geo/s1" 30 ) 31 32 // CellID uniquely identifies a cell in the S2 cell decomposition. 33 // The most significant 3 bits encode the face number (0-5). The 34 // remaining 61 bits encode the position of the center of this cell 35 // along the Hilbert curve on that face. The zero value and the value 36 // (1<<64)-1 are invalid cell IDs. The first compares less than any 37 // valid cell ID, the second as greater than any valid cell ID. 38 // 39 // Sequentially increasing cell IDs follow a continuous space-filling curve 40 // over the entire sphere. They have the following properties: 41 // 42 // - The ID of a cell at level k consists of a 3-bit face number followed 43 // by k bit pairs that recursively select one of the four children of 44 // each cell. The next bit is always 1, and all other bits are 0. 45 // Therefore, the level of a cell is determined by the position of its 46 // lowest-numbered bit that is turned on (for a cell at level k, this 47 // position is 2 * (maxLevel - k)). 48 // 49 // - The ID of a parent cell is at the midpoint of the range of IDs spanned 50 // by its children (or by its descendants at any level). 51 // 52 // Leaf cells are often used to represent points on the unit sphere, and 53 // this type provides methods for converting directly between these two 54 // representations. For cells that represent 2D regions rather than 55 // discrete point, it is better to use Cells. 56 type CellID uint64 57 58 // SentinelCellID is an invalid cell ID guaranteed to be larger than any 59 // valid cell ID. It is used primarily by ShapeIndex. The value is also used 60 // by some S2 types when encoding data. 61 // Note that the sentinel's RangeMin == RangeMax == itself. 62 const SentinelCellID = CellID(^uint64(0)) 63 64 // sortCellIDs sorts the slice of CellIDs in place. 65 func sortCellIDs(ci []CellID) { 66 sort.Sort(cellIDs(ci)) 67 } 68 69 // cellIDs implements the Sort interface for slices of CellIDs. 70 type cellIDs []CellID 71 72 func (c cellIDs) Len() int { return len(c) } 73 func (c cellIDs) Swap(i, j int) { c[i], c[j] = c[j], c[i] } 74 func (c cellIDs) Less(i, j int) bool { return c[i] < c[j] } 75 76 // TODO(dsymonds): Some of these constants should probably be exported. 77 const ( 78 faceBits = 3 79 numFaces = 6 80 81 // This is the number of levels needed to specify a leaf cell. 82 maxLevel = 30 83 84 // The extra position bit (61 rather than 60) lets us encode each cell as its 85 // Hilbert curve position at the cell center (which is halfway along the 86 // portion of the Hilbert curve that fills that cell). 87 posBits = 2*maxLevel + 1 88 89 // The maximum index of a valid leaf cell plus one. The range of valid leaf 90 // cell indices is [0..maxSize-1]. 91 maxSize = 1 << maxLevel 92 93 wrapOffset = uint64(numFaces) << posBits 94 ) 95 96 // CellIDFromFacePosLevel returns a cell given its face in the range 97 // [0,5], the 61-bit Hilbert curve position pos within that face, and 98 // the level in the range [0,maxLevel]. The position in the cell ID 99 // will be truncated to correspond to the Hilbert curve position at 100 // the center of the returned cell. 101 func CellIDFromFacePosLevel(face int, pos uint64, level int) CellID { 102 return CellID(uint64(face)<<posBits + pos | 1).Parent(level) 103 } 104 105 // CellIDFromFace returns the cell corresponding to a given S2 cube face. 106 func CellIDFromFace(face int) CellID { 107 return CellID((uint64(face) << posBits) + lsbForLevel(0)) 108 } 109 110 // CellIDFromLatLng returns the leaf cell containing ll. 111 func CellIDFromLatLng(ll LatLng) CellID { 112 return cellIDFromPoint(PointFromLatLng(ll)) 113 } 114 115 // CellIDFromToken returns a cell given a hex-encoded string of its uint64 ID. 116 func CellIDFromToken(s string) CellID { 117 if len(s) > 16 { 118 return CellID(0) 119 } 120 n, err := strconv.ParseUint(s, 16, 64) 121 if err != nil { 122 return CellID(0) 123 } 124 // Equivalent to right-padding string with zeros to 16 characters. 125 if len(s) < 16 { 126 n = n << (4 * uint(16-len(s))) 127 } 128 return CellID(n) 129 } 130 131 // ToToken returns a hex-encoded string of the uint64 cell id, with leading 132 // zeros included but trailing zeros stripped. 133 func (ci CellID) ToToken() string { 134 s := strings.TrimRight(fmt.Sprintf("%016x", uint64(ci)), "0") 135 if len(s) == 0 { 136 return "X" 137 } 138 return s 139 } 140 141 // IsValid reports whether ci represents a valid cell. 142 func (ci CellID) IsValid() bool { 143 return ci.Face() < numFaces && (ci.lsb()&0x1555555555555555 != 0) 144 } 145 146 // Face returns the cube face for this cell ID, in the range [0,5]. 147 func (ci CellID) Face() int { return int(uint64(ci) >> posBits) } 148 149 // Pos returns the position along the Hilbert curve of this cell ID, in the range [0,2^posBits-1]. 150 func (ci CellID) Pos() uint64 { return uint64(ci) & (^uint64(0) >> faceBits) } 151 152 // Level returns the subdivision level of this cell ID, in the range [0, maxLevel]. 153 func (ci CellID) Level() int { 154 return maxLevel - findLSBSetNonZero64(uint64(ci))>>1 155 } 156 157 // IsLeaf returns whether this cell ID is at the deepest level; 158 // that is, the level at which the cells are smallest. 159 func (ci CellID) IsLeaf() bool { return uint64(ci)&1 != 0 } 160 161 // ChildPosition returns the child position (0..3) of this cell's 162 // ancestor at the given level, relative to its parent. The argument 163 // should be in the range 1..kMaxLevel. For example, 164 // ChildPosition(1) returns the position of this cell's level-1 165 // ancestor within its top-level face cell. 166 func (ci CellID) ChildPosition(level int) int { 167 return int(uint64(ci)>>uint64(2*(maxLevel-level)+1)) & 3 168 } 169 170 // lsbForLevel returns the lowest-numbered bit that is on for cells at the given level. 171 func lsbForLevel(level int) uint64 { return 1 << uint64(2*(maxLevel-level)) } 172 173 // Parent returns the cell at the given level, which must be no greater than the current level. 174 func (ci CellID) Parent(level int) CellID { 175 lsb := lsbForLevel(level) 176 return CellID((uint64(ci) & -lsb) | lsb) 177 } 178 179 // immediateParent is cheaper than Parent, but assumes !ci.isFace(). 180 func (ci CellID) immediateParent() CellID { 181 nlsb := CellID(ci.lsb() << 2) 182 return (ci & -nlsb) | nlsb 183 } 184 185 // isFace returns whether this is a top-level (face) cell. 186 func (ci CellID) isFace() bool { return uint64(ci)&(lsbForLevel(0)-1) == 0 } 187 188 // lsb returns the least significant bit that is set. 189 func (ci CellID) lsb() uint64 { return uint64(ci) & -uint64(ci) } 190 191 // Children returns the four immediate children of this cell. 192 // If ci is a leaf cell, it returns four identical cells that are not the children. 193 func (ci CellID) Children() [4]CellID { 194 var ch [4]CellID 195 lsb := CellID(ci.lsb()) 196 ch[0] = ci - lsb + lsb>>2 197 lsb >>= 1 198 ch[1] = ch[0] + lsb 199 ch[2] = ch[1] + lsb 200 ch[3] = ch[2] + lsb 201 return ch 202 } 203 204 func sizeIJ(level int) int { 205 return 1 << uint(maxLevel-level) 206 } 207 208 // EdgeNeighbors returns the four cells that are adjacent across the cell's four edges. 209 // Edges 0, 1, 2, 3 are in the down, right, up, left directions in the face space. 210 // All neighbors are guaranteed to be distinct. 211 func (ci CellID) EdgeNeighbors() [4]CellID { 212 level := ci.Level() 213 size := sizeIJ(level) 214 f, i, j, _ := ci.faceIJOrientation() 215 return [4]CellID{ 216 cellIDFromFaceIJWrap(f, i, j-size).Parent(level), 217 cellIDFromFaceIJWrap(f, i+size, j).Parent(level), 218 cellIDFromFaceIJWrap(f, i, j+size).Parent(level), 219 cellIDFromFaceIJWrap(f, i-size, j).Parent(level), 220 } 221 } 222 223 // VertexNeighbors returns the neighboring cellIDs with vertex closest to this cell at the given level. 224 // (Normally there are four neighbors, but the closest vertex may only have three neighbors if it is one of 225 // the 8 cube vertices.) 226 func (ci CellID) VertexNeighbors(level int) []CellID { 227 halfSize := sizeIJ(level + 1) 228 size := halfSize << 1 229 f, i, j, _ := ci.faceIJOrientation() 230 231 var isame, jsame bool 232 var ioffset, joffset int 233 if i&halfSize != 0 { 234 ioffset = size 235 isame = (i + size) < maxSize 236 } else { 237 ioffset = -size 238 isame = (i - size) >= 0 239 } 240 if j&halfSize != 0 { 241 joffset = size 242 jsame = (j + size) < maxSize 243 } else { 244 joffset = -size 245 jsame = (j - size) >= 0 246 } 247 248 results := []CellID{ 249 ci.Parent(level), 250 cellIDFromFaceIJSame(f, i+ioffset, j, isame).Parent(level), 251 cellIDFromFaceIJSame(f, i, j+joffset, jsame).Parent(level), 252 } 253 254 if isame || jsame { 255 results = append(results, cellIDFromFaceIJSame(f, i+ioffset, j+joffset, isame && jsame).Parent(level)) 256 } 257 258 return results 259 } 260 261 // AllNeighbors returns all neighbors of this cell at the given level. Two 262 // cells X and Y are neighbors if their boundaries intersect but their 263 // interiors do not. In particular, two cells that intersect at a single 264 // point are neighbors. Note that for cells adjacent to a face vertex, the 265 // same neighbor may be returned more than once. There could be up to eight 266 // neighbors including the diagonal ones that share the vertex. 267 // 268 // This requires level >= ci.Level(). 269 func (ci CellID) AllNeighbors(level int) []CellID { 270 var neighbors []CellID 271 272 face, i, j, _ := ci.faceIJOrientation() 273 274 // Find the coordinates of the lower left-hand leaf cell. We need to 275 // normalize (i,j) to a known position within the cell because level 276 // may be larger than this cell's level. 277 size := sizeIJ(ci.Level()) 278 i &= -size 279 j &= -size 280 281 nbrSize := sizeIJ(level) 282 283 // We compute the top-bottom, left-right, and diagonal neighbors in one 284 // pass. The loop test is at the end of the loop to avoid 32-bit overflow. 285 for k := -nbrSize; ; k += nbrSize { 286 var sameFace bool 287 if k < 0 { 288 sameFace = (j+k >= 0) 289 } else if k >= size { 290 sameFace = (j+k < maxSize) 291 } else { 292 sameFace = true 293 // Top and bottom neighbors. 294 neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+k, j-nbrSize, 295 j-size >= 0).Parent(level)) 296 neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+k, j+size, 297 j+size < maxSize).Parent(level)) 298 } 299 300 // Left, right, and diagonal neighbors. 301 neighbors = append(neighbors, cellIDFromFaceIJSame(face, i-nbrSize, j+k, 302 sameFace && i-size >= 0).Parent(level)) 303 neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+size, j+k, 304 sameFace && i+size < maxSize).Parent(level)) 305 306 if k >= size { 307 break 308 } 309 } 310 311 return neighbors 312 } 313 314 // RangeMin returns the minimum CellID that is contained within this cell. 315 func (ci CellID) RangeMin() CellID { return CellID(uint64(ci) - (ci.lsb() - 1)) } 316 317 // RangeMax returns the maximum CellID that is contained within this cell. 318 func (ci CellID) RangeMax() CellID { return CellID(uint64(ci) + (ci.lsb() - 1)) } 319 320 // Contains returns true iff the CellID contains oci. 321 func (ci CellID) Contains(oci CellID) bool { 322 return uint64(ci.RangeMin()) <= uint64(oci) && uint64(oci) <= uint64(ci.RangeMax()) 323 } 324 325 // Intersects returns true iff the CellID intersects oci. 326 func (ci CellID) Intersects(oci CellID) bool { 327 return uint64(oci.RangeMin()) <= uint64(ci.RangeMax()) && uint64(oci.RangeMax()) >= uint64(ci.RangeMin()) 328 } 329 330 // String returns the string representation of the cell ID in the form "1/3210". 331 func (ci CellID) String() string { 332 if !ci.IsValid() { 333 return "Invalid: " + strconv.FormatInt(int64(ci), 16) 334 } 335 var b bytes.Buffer 336 b.WriteByte("012345"[ci.Face()]) // values > 5 will have been picked off by !IsValid above 337 b.WriteByte('/') 338 for level := 1; level <= ci.Level(); level++ { 339 b.WriteByte("0123"[ci.ChildPosition(level)]) 340 } 341 return b.String() 342 } 343 344 // cellIDFromString returns a CellID from a string in the form "1/3210". 345 func cellIDFromString(s string) CellID { 346 level := len(s) - 2 347 if level < 0 || level > maxLevel { 348 return CellID(0) 349 } 350 face := int(s[0] - '0') 351 if face < 0 || face > 5 || s[1] != '/' { 352 return CellID(0) 353 } 354 id := CellIDFromFace(face) 355 for i := 2; i < len(s); i++ { 356 childPos := s[i] - '0' 357 if childPos < 0 || childPos > 3 { 358 return CellID(0) 359 } 360 id = id.Children()[childPos] 361 } 362 return id 363 } 364 365 // Point returns the center of the s2 cell on the sphere as a Point. 366 // The maximum directional error in Point (compared to the exact 367 // mathematical result) is 1.5 * dblEpsilon radians, and the maximum length 368 // error is 2 * dblEpsilon (the same as Normalize). 369 func (ci CellID) Point() Point { return Point{ci.rawPoint().Normalize()} } 370 371 // LatLng returns the center of the s2 cell on the sphere as a LatLng. 372 func (ci CellID) LatLng() LatLng { return LatLngFromPoint(Point{ci.rawPoint()}) } 373 374 // ChildBegin returns the first child in a traversal of the children of this cell, in Hilbert curve order. 375 // 376 // for ci := c.ChildBegin(); ci != c.ChildEnd(); ci = ci.Next() { 377 // ... 378 // } 379 func (ci CellID) ChildBegin() CellID { 380 ol := ci.lsb() 381 return CellID(uint64(ci) - ol + ol>>2) 382 } 383 384 // ChildBeginAtLevel returns the first cell in a traversal of children a given level deeper than this cell, in 385 // Hilbert curve order. The given level must be no smaller than the cell's level. 386 // See ChildBegin for example use. 387 func (ci CellID) ChildBeginAtLevel(level int) CellID { 388 return CellID(uint64(ci) - ci.lsb() + lsbForLevel(level)) 389 } 390 391 // ChildEnd returns the first cell after a traversal of the children of this cell in Hilbert curve order. 392 // The returned cell may be invalid. 393 func (ci CellID) ChildEnd() CellID { 394 ol := ci.lsb() 395 return CellID(uint64(ci) + ol + ol>>2) 396 } 397 398 // ChildEndAtLevel returns the first cell after the last child in a traversal of children a given level deeper 399 // than this cell, in Hilbert curve order. 400 // The given level must be no smaller than the cell's level. 401 // The returned cell may be invalid. 402 func (ci CellID) ChildEndAtLevel(level int) CellID { 403 return CellID(uint64(ci) + ci.lsb() + lsbForLevel(level)) 404 } 405 406 // Next returns the next cell along the Hilbert curve. 407 // This is expected to be used with ChildBegin and ChildEnd, 408 // or ChildBeginAtLevel and ChildEndAtLevel. 409 func (ci CellID) Next() CellID { 410 return CellID(uint64(ci) + ci.lsb()<<1) 411 } 412 413 // Prev returns the previous cell along the Hilbert curve. 414 func (ci CellID) Prev() CellID { 415 return CellID(uint64(ci) - ci.lsb()<<1) 416 } 417 418 // NextWrap returns the next cell along the Hilbert curve, wrapping from last to 419 // first as necessary. This should not be used with ChildBegin and ChildEnd. 420 func (ci CellID) NextWrap() CellID { 421 n := ci.Next() 422 if uint64(n) < wrapOffset { 423 return n 424 } 425 return CellID(uint64(n) - wrapOffset) 426 } 427 428 // PrevWrap returns the previous cell along the Hilbert curve, wrapping around from 429 // first to last as necessary. This should not be used with ChildBegin and ChildEnd. 430 func (ci CellID) PrevWrap() CellID { 431 p := ci.Prev() 432 if uint64(p) < wrapOffset { 433 return p 434 } 435 return CellID(uint64(p) + wrapOffset) 436 } 437 438 // AdvanceWrap advances or retreats the indicated number of steps along the 439 // Hilbert curve at the current level and returns the new position. The 440 // position wraps between the first and last faces as necessary. 441 func (ci CellID) AdvanceWrap(steps int64) CellID { 442 if steps == 0 { 443 return ci 444 } 445 446 // We clamp the number of steps if necessary to ensure that we do not 447 // advance past the End() or before the Begin() of this level. 448 shift := uint(2*(maxLevel-ci.Level()) + 1) 449 if steps < 0 { 450 if min := -int64(uint64(ci) >> shift); steps < min { 451 wrap := int64(wrapOffset >> shift) 452 steps %= wrap 453 if steps < min { 454 steps += wrap 455 } 456 } 457 } else { 458 // Unlike Advance(), we don't want to return End(level). 459 if max := int64((wrapOffset - uint64(ci)) >> shift); steps > max { 460 wrap := int64(wrapOffset >> shift) 461 steps %= wrap 462 if steps > max { 463 steps -= wrap 464 } 465 } 466 } 467 468 // If steps is negative, then shifting it left has undefined behavior. 469 // Cast to uint64 for a 2's complement answer. 470 return CellID(uint64(ci) + (uint64(steps) << shift)) 471 } 472 473 // Encode encodes the CellID. 474 func (ci CellID) Encode(w io.Writer) error { 475 e := &encoder{w: w} 476 ci.encode(e) 477 return e.err 478 } 479 480 func (ci CellID) encode(e *encoder) { 481 e.writeUint64(uint64(ci)) 482 } 483 484 // Decode decodes the CellID. 485 func (ci *CellID) Decode(r io.Reader) error { 486 d := &decoder{r: asByteReader(r)} 487 ci.decode(d) 488 return d.err 489 } 490 491 func (ci *CellID) decode(d *decoder) { 492 *ci = CellID(d.readUint64()) 493 } 494 495 // TODO: the methods below are not exported yet. Settle on the entire API design 496 // before doing this. Do we want to mirror the C++ one as closely as possible? 497 498 // distanceFromBegin returns the number of steps along the Hilbert curve that 499 // this cell is from the first node in the S2 hierarchy at our level. (i.e., 500 // FromFace(0).ChildBeginAtLevel(ci.Level())). This is analogous to Pos(), but 501 // for this cell's level. 502 // The return value is always non-negative. 503 func (ci CellID) distanceFromBegin() int64 { 504 return int64(ci >> uint64(2*(maxLevel-ci.Level())+1)) 505 } 506 507 // rawPoint returns an unnormalized r3 vector from the origin through the center 508 // of the s2 cell on the sphere. 509 func (ci CellID) rawPoint() r3.Vector { 510 face, si, ti := ci.faceSiTi() 511 return faceUVToXYZ(face, stToUV((0.5/maxSize)*float64(si)), stToUV((0.5/maxSize)*float64(ti))) 512 } 513 514 // faceSiTi returns the Face/Si/Ti coordinates of the center of the cell. 515 func (ci CellID) faceSiTi() (face int, si, ti uint32) { 516 face, i, j, _ := ci.faceIJOrientation() 517 delta := 0 518 if ci.IsLeaf() { 519 delta = 1 520 } else { 521 if (i^(int(ci)>>2))&1 != 0 { 522 delta = 2 523 } 524 } 525 return face, uint32(2*i + delta), uint32(2*j + delta) 526 } 527 528 // faceIJOrientation uses the global lookupIJ table to unfiddle the bits of ci. 529 func (ci CellID) faceIJOrientation() (f, i, j, orientation int) { 530 f = ci.Face() 531 orientation = f & swapMask 532 nbits := maxLevel - 7*lookupBits // first iteration 533 534 // Each iteration maps 8 bits of the Hilbert curve position into 535 // 4 bits of "i" and "j". The lookup table transforms a key of the 536 // form "ppppppppoo" to a value of the form "iiiijjjjoo", where the 537 // letters [ijpo] represents bits of "i", "j", the Hilbert curve 538 // position, and the Hilbert curve orientation respectively. 539 // 540 // On the first iteration we need to be careful to clear out the bits 541 // representing the cube face. 542 for k := 7; k >= 0; k-- { 543 orientation += (int(uint64(ci)>>uint64(k*2*lookupBits+1)) & ((1 << uint(2*nbits)) - 1)) << 2 544 orientation = lookupIJ[orientation] 545 i += (orientation >> (lookupBits + 2)) << uint(k*lookupBits) 546 j += ((orientation >> 2) & ((1 << lookupBits) - 1)) << uint(k*lookupBits) 547 orientation &= (swapMask | invertMask) 548 nbits = lookupBits // following iterations 549 } 550 551 // The position of a non-leaf cell at level "n" consists of a prefix of 552 // 2*n bits that identifies the cell, followed by a suffix of 553 // 2*(maxLevel-n)+1 bits of the form 10*. If n==maxLevel, the suffix is 554 // just "1" and has no effect. Otherwise, it consists of "10", followed 555 // by (maxLevel-n-1) repetitions of "00", followed by "0". The "10" has 556 // no effect, while each occurrence of "00" has the effect of reversing 557 // the swapMask bit. 558 if ci.lsb()&0x1111111111111110 != 0 { 559 orientation ^= swapMask 560 } 561 562 return 563 } 564 565 // cellIDFromFaceIJ returns a leaf cell given its cube face (range 0..5) and IJ coordinates. 566 func cellIDFromFaceIJ(f, i, j int) CellID { 567 // Note that this value gets shifted one bit to the left at the end 568 // of the function. 569 n := uint64(f) << (posBits - 1) 570 // Alternating faces have opposite Hilbert curve orientations; this 571 // is necessary in order for all faces to have a right-handed 572 // coordinate system. 573 bits := f & swapMask 574 // Each iteration maps 4 bits of "i" and "j" into 8 bits of the Hilbert 575 // curve position. The lookup table transforms a 10-bit key of the form 576 // "iiiijjjjoo" to a 10-bit value of the form "ppppppppoo", where the 577 // letters [ijpo] denote bits of "i", "j", Hilbert curve position, and 578 // Hilbert curve orientation respectively. 579 for k := 7; k >= 0; k-- { 580 mask := (1 << lookupBits) - 1 581 bits += ((i >> uint(k*lookupBits)) & mask) << (lookupBits + 2) 582 bits += ((j >> uint(k*lookupBits)) & mask) << 2 583 bits = lookupPos[bits] 584 n |= uint64(bits>>2) << (uint(k) * 2 * lookupBits) 585 bits &= (swapMask | invertMask) 586 } 587 return CellID(n*2 + 1) 588 } 589 590 func cellIDFromFaceIJWrap(f, i, j int) CellID { 591 // Convert i and j to the coordinates of a leaf cell just beyond the 592 // boundary of this face. This prevents 32-bit overflow in the case 593 // of finding the neighbors of a face cell. 594 i = clampInt(i, -1, maxSize) 595 j = clampInt(j, -1, maxSize) 596 597 // We want to wrap these coordinates onto the appropriate adjacent face. 598 // The easiest way to do this is to convert the (i,j) coordinates to (x,y,z) 599 // (which yields a point outside the normal face boundary), and then call 600 // xyzToFaceUV to project back onto the correct face. 601 // 602 // The code below converts (i,j) to (si,ti), and then (si,ti) to (u,v) using 603 // the linear projection (u=2*s-1 and v=2*t-1). (The code further below 604 // converts back using the inverse projection, s=0.5*(u+1) and t=0.5*(v+1). 605 // Any projection would work here, so we use the simplest.) We also clamp 606 // the (u,v) coordinates so that the point is barely outside the 607 // [-1,1]x[-1,1] face rectangle, since otherwise the reprojection step 608 // (which divides by the new z coordinate) might change the other 609 // coordinates enough so that we end up in the wrong leaf cell. 610 const scale = 1.0 / maxSize 611 limit := math.Nextafter(1, 2) 612 u := math.Max(-limit, math.Min(limit, scale*float64((i<<1)+1-maxSize))) 613 v := math.Max(-limit, math.Min(limit, scale*float64((j<<1)+1-maxSize))) 614 615 // Find the leaf cell coordinates on the adjacent face, and convert 616 // them to a cell id at the appropriate level. 617 f, u, v = xyzToFaceUV(faceUVToXYZ(f, u, v)) 618 return cellIDFromFaceIJ(f, stToIJ(0.5*(u+1)), stToIJ(0.5*(v+1))) 619 } 620 621 func cellIDFromFaceIJSame(f, i, j int, sameFace bool) CellID { 622 if sameFace { 623 return cellIDFromFaceIJ(f, i, j) 624 } 625 return cellIDFromFaceIJWrap(f, i, j) 626 } 627 628 // ijToSTMin converts the i- or j-index of a leaf cell to the minimum corresponding 629 // s- or t-value contained by that cell. The argument must be in the range 630 // [0..2**30], i.e. up to one position beyond the normal range of valid leaf 631 // cell indices. 632 func ijToSTMin(i int) float64 { 633 return float64(i) / float64(maxSize) 634 } 635 636 // stToIJ converts value in ST coordinates to a value in IJ coordinates. 637 func stToIJ(s float64) int { 638 return clampInt(int(math.Floor(maxSize*s)), 0, maxSize-1) 639 } 640 641 // cellIDFromPoint returns a leaf cell containing point p. Usually there is 642 // exactly one such cell, but for points along the edge of a cell, any 643 // adjacent cell may be (deterministically) chosen. This is because 644 // s2.CellIDs are considered to be closed sets. The returned cell will 645 // always contain the given point, i.e. 646 // 647 // CellFromPoint(p).ContainsPoint(p) 648 // 649 // is always true. 650 func cellIDFromPoint(p Point) CellID { 651 f, u, v := xyzToFaceUV(r3.Vector{p.X, p.Y, p.Z}) 652 i := stToIJ(uvToST(u)) 653 j := stToIJ(uvToST(v)) 654 return cellIDFromFaceIJ(f, i, j) 655 } 656 657 // ijLevelToBoundUV returns the bounds in (u,v)-space for the cell at the given 658 // level containing the leaf cell with the given (i,j)-coordinates. 659 func ijLevelToBoundUV(i, j, level int) r2.Rect { 660 cellSize := sizeIJ(level) 661 xLo := i & -cellSize 662 yLo := j & -cellSize 663 664 return r2.Rect{ 665 X: r1.Interval{ 666 Lo: stToUV(ijToSTMin(xLo)), 667 Hi: stToUV(ijToSTMin(xLo + cellSize)), 668 }, 669 Y: r1.Interval{ 670 Lo: stToUV(ijToSTMin(yLo)), 671 Hi: stToUV(ijToSTMin(yLo + cellSize)), 672 }, 673 } 674 } 675 676 // Constants related to the bit mangling in the Cell ID. 677 const ( 678 lookupBits = 4 679 swapMask = 0x01 680 invertMask = 0x02 681 ) 682 683 // The following lookup tables are used to convert efficiently between an 684 // (i,j) cell index and the corresponding position along the Hilbert curve. 685 // 686 // lookupPos maps 4 bits of "i", 4 bits of "j", and 2 bits representing the 687 // orientation of the current cell into 8 bits representing the order in which 688 // that subcell is visited by the Hilbert curve, plus 2 bits indicating the 689 // new orientation of the Hilbert curve within that subcell. (Cell 690 // orientations are represented as combination of swapMask and invertMask.) 691 // 692 // lookupIJ is an inverted table used for mapping in the opposite 693 // direction. 694 // 695 // We also experimented with looking up 16 bits at a time (14 bits of position 696 // plus 2 of orientation) but found that smaller lookup tables gave better 697 // performance. (2KB fits easily in the primary cache.) 698 var ( 699 ijToPos = [4][4]int{ 700 {0, 1, 3, 2}, // canonical order 701 {0, 3, 1, 2}, // axes swapped 702 {2, 3, 1, 0}, // bits inverted 703 {2, 1, 3, 0}, // swapped & inverted 704 } 705 posToIJ = [4][4]int{ 706 {0, 1, 3, 2}, // canonical order: (0,0), (0,1), (1,1), (1,0) 707 {0, 2, 3, 1}, // axes swapped: (0,0), (1,0), (1,1), (0,1) 708 {3, 2, 0, 1}, // bits inverted: (1,1), (1,0), (0,0), (0,1) 709 {3, 1, 0, 2}, // swapped & inverted: (1,1), (0,1), (0,0), (1,0) 710 } 711 posToOrientation = [4]int{swapMask, 0, 0, invertMask | swapMask} 712 lookupIJ [1 << (2*lookupBits + 2)]int 713 lookupPos [1 << (2*lookupBits + 2)]int 714 ) 715 716 func init() { 717 initLookupCell(0, 0, 0, 0, 0, 0) 718 initLookupCell(0, 0, 0, swapMask, 0, swapMask) 719 initLookupCell(0, 0, 0, invertMask, 0, invertMask) 720 initLookupCell(0, 0, 0, swapMask|invertMask, 0, swapMask|invertMask) 721 } 722 723 // initLookupCell initializes the lookupIJ table at init time. 724 func initLookupCell(level, i, j, origOrientation, pos, orientation int) { 725 if level == lookupBits { 726 ij := (i << lookupBits) + j 727 lookupPos[(ij<<2)+origOrientation] = (pos << 2) + orientation 728 lookupIJ[(pos<<2)+origOrientation] = (ij << 2) + orientation 729 return 730 } 731 732 level++ 733 i <<= 1 734 j <<= 1 735 pos <<= 2 736 r := posToIJ[orientation] 737 initLookupCell(level, i+(r[0]>>1), j+(r[0]&1), origOrientation, pos, orientation^posToOrientation[0]) 738 initLookupCell(level, i+(r[1]>>1), j+(r[1]&1), origOrientation, pos+1, orientation^posToOrientation[1]) 739 initLookupCell(level, i+(r[2]>>1), j+(r[2]&1), origOrientation, pos+2, orientation^posToOrientation[2]) 740 initLookupCell(level, i+(r[3]>>1), j+(r[3]&1), origOrientation, pos+3, orientation^posToOrientation[3]) 741 } 742 743 // CommonAncestorLevel returns the level of the common ancestor of the two S2 CellIDs. 744 func (ci CellID) CommonAncestorLevel(other CellID) (level int, ok bool) { 745 bits := uint64(ci ^ other) 746 if bits < ci.lsb() { 747 bits = ci.lsb() 748 } 749 if bits < other.lsb() { 750 bits = other.lsb() 751 } 752 753 msbPos := findMSBSetNonZero64(bits) 754 if msbPos > 60 { 755 return 0, false 756 } 757 return (60 - msbPos) >> 1, true 758 } 759 760 // Advance advances or retreats the indicated number of steps along the 761 // Hilbert curve at the current level, and returns the new position. The 762 // position is never advanced past End() or before Begin(). 763 func (ci CellID) Advance(steps int64) CellID { 764 if steps == 0 { 765 return ci 766 } 767 768 // We clamp the number of steps if necessary to ensure that we do not 769 // advance past the End() or before the Begin() of this level. Note that 770 // minSteps and maxSteps always fit in a signed 64-bit integer. 771 stepShift := uint(2*(maxLevel-ci.Level()) + 1) 772 if steps < 0 { 773 minSteps := -int64(uint64(ci) >> stepShift) 774 if steps < minSteps { 775 steps = minSteps 776 } 777 } else { 778 maxSteps := int64((wrapOffset + ci.lsb() - uint64(ci)) >> stepShift) 779 if steps > maxSteps { 780 steps = maxSteps 781 } 782 } 783 return ci + CellID(steps)<<stepShift 784 } 785 786 // centerST return the center of the CellID in (s,t)-space. 787 func (ci CellID) centerST() r2.Point { 788 _, si, ti := ci.faceSiTi() 789 return r2.Point{siTiToST(si), siTiToST(ti)} 790 } 791 792 // sizeST returns the edge length of this CellID in (s,t)-space at the given level. 793 func (ci CellID) sizeST(level int) float64 { 794 return ijToSTMin(sizeIJ(level)) 795 } 796 797 // boundST returns the bound of this CellID in (s,t)-space. 798 func (ci CellID) boundST() r2.Rect { 799 s := ci.sizeST(ci.Level()) 800 return r2.RectFromCenterSize(ci.centerST(), r2.Point{s, s}) 801 } 802 803 // centerUV returns the center of this CellID in (u,v)-space. Note that 804 // the center of the cell is defined as the point at which it is recursively 805 // subdivided into four children; in general, it is not at the midpoint of 806 // the (u,v) rectangle covered by the cell. 807 func (ci CellID) centerUV() r2.Point { 808 _, si, ti := ci.faceSiTi() 809 return r2.Point{stToUV(siTiToST(si)), stToUV(siTiToST(ti))} 810 } 811 812 // boundUV returns the bound of this CellID in (u,v)-space. 813 func (ci CellID) boundUV() r2.Rect { 814 _, i, j, _ := ci.faceIJOrientation() 815 return ijLevelToBoundUV(i, j, ci.Level()) 816 } 817 818 // expandEndpoint returns a new u-coordinate u' such that the distance from the 819 // line u=u' to the given edge (u,v0)-(u,v1) is exactly the given distance 820 // (which is specified as the sine of the angle corresponding to the distance). 821 func expandEndpoint(u, maxV, sinDist float64) float64 { 822 // This is based on solving a spherical right triangle, similar to the 823 // calculation in Cap.RectBound. 824 // Given an edge of the form (u,v0)-(u,v1), let maxV = max(abs(v0), abs(v1)). 825 sinUShift := sinDist * math.Sqrt((1+u*u+maxV*maxV)/(1+u*u)) 826 cosUShift := math.Sqrt(1 - sinUShift*sinUShift) 827 // The following is an expansion of tan(atan(u) + asin(sinUShift)). 828 return (cosUShift*u + sinUShift) / (cosUShift - sinUShift*u) 829 } 830 831 // expandedByDistanceUV returns a rectangle expanded in (u,v)-space so that it 832 // contains all points within the given distance of the boundary, and return the 833 // smallest such rectangle. If the distance is negative, then instead shrink this 834 // rectangle so that it excludes all points within the given absolute distance 835 // of the boundary. 836 // 837 // Distances are measured *on the sphere*, not in (u,v)-space. For example, 838 // you can use this method to expand the (u,v)-bound of an CellID so that 839 // it contains all points within 5km of the original cell. You can then 840 // test whether a point lies within the expanded bounds like this: 841 // 842 // if u, v, ok := faceXYZtoUV(face, point); ok && bound.ContainsPoint(r2.Point{u,v}) { ... } 843 // 844 // Limitations: 845 // 846 // - Because the rectangle is drawn on one of the six cube-face planes 847 // (i.e., {x,y,z} = +/-1), it can cover at most one hemisphere. This 848 // limits the maximum amount that a rectangle can be expanded. For 849 // example, CellID bounds can be expanded safely by at most 45 degrees 850 // (about 5000 km on the Earth's surface). 851 // 852 // - The implementation is not exact for negative distances. The resulting 853 // rectangle will exclude all points within the given distance of the 854 // boundary but may be slightly smaller than necessary. 855 func expandedByDistanceUV(uv r2.Rect, distance s1.Angle) r2.Rect { 856 // Expand each of the four sides of the rectangle just enough to include all 857 // points within the given distance of that side. (The rectangle may be 858 // expanded by a different amount in (u,v)-space on each side.) 859 maxU := math.Max(math.Abs(uv.X.Lo), math.Abs(uv.X.Hi)) 860 maxV := math.Max(math.Abs(uv.Y.Lo), math.Abs(uv.Y.Hi)) 861 sinDist := math.Sin(float64(distance)) 862 return r2.Rect{ 863 X: r1.Interval{expandEndpoint(uv.X.Lo, maxV, -sinDist), 864 expandEndpoint(uv.X.Hi, maxV, sinDist)}, 865 Y: r1.Interval{expandEndpoint(uv.Y.Lo, maxU, -sinDist), 866 expandEndpoint(uv.Y.Hi, maxU, sinDist)}} 867 } 868 869 // MaxTile returns the largest cell with the same RangeMin such that 870 // RangeMax < limit.RangeMin. It returns limit if no such cell exists. 871 // This method can be used to generate a small set of CellIDs that covers 872 // a given range (a tiling). This example shows how to generate a tiling 873 // for a semi-open range of leaf cells [start, limit): 874 // 875 // for id := start.MaxTile(limit); id != limit; id = id.Next().MaxTile(limit)) { ... } 876 // 877 // Note that in general the cells in the tiling will be of different sizes; 878 // they gradually get larger (near the middle of the range) and then 879 // gradually get smaller as limit is approached. 880 func (ci CellID) MaxTile(limit CellID) CellID { 881 start := ci.RangeMin() 882 if start >= limit.RangeMin() { 883 return limit 884 } 885 886 if ci.RangeMax() >= limit { 887 // The cell is too large, shrink it. Note that when generating coverings 888 // of CellID ranges, this loop usually executes only once. Also because 889 // ci.RangeMin() < limit.RangeMin(), we will always exit the loop by the 890 // time we reach a leaf cell. 891 for { 892 ci = ci.Children()[0] 893 if ci.RangeMax() < limit { 894 break 895 } 896 } 897 return ci 898 } 899 900 // The cell may be too small. Grow it if necessary. Note that generally 901 // this loop only iterates once. 902 for !ci.isFace() { 903 parent := ci.immediateParent() 904 if parent.RangeMin() != start || parent.RangeMax() >= limit { 905 break 906 } 907 ci = parent 908 } 909 return ci 910 } 911 912 // centerFaceSiTi returns the (face, si, ti) coordinates of the center of the cell. 913 // Note that although (si,ti) coordinates span the range [0,2**31] in general, 914 // the cell center coordinates are always in the range [1,2**31-1] and 915 // therefore can be represented using a signed 32-bit integer. 916 func (ci CellID) centerFaceSiTi() (face, si, ti int) { 917 // First we compute the discrete (i,j) coordinates of a leaf cell contained 918 // within the given cell. Given that cells are represented by the Hilbert 919 // curve position corresponding at their center, it turns out that the cell 920 // returned by faceIJOrientation is always one of two leaf cells closest 921 // to the center of the cell (unless the given cell is a leaf cell itself, 922 // in which case there is only one possibility). 923 // 924 // Given a cell of size s >= 2 (i.e. not a leaf cell), and letting (imin, 925 // jmin) be the coordinates of its lower left-hand corner, the leaf cell 926 // returned by faceIJOrientation is either (imin + s/2, jmin + s/2) 927 // (imin + s/2 - 1, jmin + s/2 - 1). The first case is the one we want. 928 // We can distinguish these two cases by looking at the low bit of i or 929 // j. In the second case the low bit is one, unless s == 2 (i.e. the 930 // level just above leaf cells) in which case the low bit is zero. 931 // 932 // In the code below, the expression ((i ^ (int(id) >> 2)) & 1) is true 933 // if we are in the second case described above. 934 face, i, j, _ := ci.faceIJOrientation() 935 delta := 0 936 if ci.IsLeaf() { 937 delta = 1 938 } else if (int64(i)^(int64(ci)>>2))&1 == 1 { 939 delta = 2 940 } 941 942 // Note that (2 * {i,j} + delta) will never overflow a 32-bit integer. 943 return face, 2*i + delta, 2*j + delta 944 }